The Role of Cytoplasmic Calcium Concentration in Photoreceptor Light Adaptation

Author(s):  
T. D. Lamb
1993 ◽  
Vol 265 (1) ◽  
pp. H74-H82 ◽  
Author(s):  
P. He ◽  
F. E. Curry

Albumin is required in vascular perfusates to maintain the normal permeability of microvessel walls. The most common mechanism proposed for action of albumin involves binding to the endothelial cell surface to increase the resistance to water and solute flows through hydraulic pathways across the capillary wall. The results of the present experiments do not conform to this simple adsorption model. Ringer perfusion increased the hydraulic conductivity (Lp) of the wall of single perfused frog mesenteric microvessels by 4.0 +/- 0.5-fold. The increase in Lp was associated with an increase of cytoplasmic calcium concentration ([Ca2+]i) from 59 +/- 5 nM when albumin was in the perfusate to a transient peak of 181 +/- 13 nM, 1–2 min after Ringer perfusion. [Ca2+]i then fell back to close to 100 nM. Processes that reduced Ca2+ influx into endothelial cells (removal of extracellular Ca2+, membrane depolarization) reduced Ca2+ influx and attenuated the increase in [Ca2+]i. The same processes abolished the increase in Lp after Ringer perfusion and restored Lp to close to control values during Ringer perfusion. Thus Ca2+ entry into endothelial cells is required to initiate and maintain the increased permeability during Ringer perfusion.


Nature ◽  
1988 ◽  
Vol 334 (6177) ◽  
pp. 67-69 ◽  
Author(s):  
H. R. Matthews ◽  
R. L. W. Murphy ◽  
G. L. Fain ◽  
T. D. Lamb

Parasitology ◽  
2008 ◽  
Vol 135 (12) ◽  
pp. 1355-1362 ◽  
Author(s):  
I. SIDÉN-KIAMOS ◽  
C. LOUIS

SUMMARYOokinetes are the motile and invasive stages of Plasmodium parasites in the mosquito host. Here we explore the role of intracellular Ca2+ in ookinete survival and motility as well as in the formation of oocysts in vitro in the rodent malaria parasite Plasmodium berghei. Treatment with the Ca2+ ionophore A23187 induced death of the parasite, an effect that could be prevented if the ookinetes were co-incubated with insect cells before incubation with the ionophore. Treatment with the intracellular calcium chelator BAPTA/AM resulted in increased formation of oocysts in vitro. Calcium imaging in the ookinete using fluorescent calcium indicators revealed that the purified ookinetes have an intracellular calcium concentration in the range of 100 nm. Intracellular calcium levels decreased substantially when the ookinetes were incubated with insect cells and their motility was concomitantly increased. Our results suggest a pleiotropic role for intracellular calcium in the ookinete.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1144 ◽  
Author(s):  
Sergei K. Trufanov ◽  
Elena Yu. Rybakova ◽  
Piotr P. Avdonin ◽  
Alexandra A. Tsitrina ◽  
Irina L. Zharkikh ◽  
...  

Second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) triggers Ca2+ release via two-pore channels (TPCs) localized in endolysosomal vesicles. The aim of the present work is to evaluate the role of TPCs in the action of norepinephrine (NE), angiotensin II (AngII), vasopressin (AVP), and 5-hydroxytriptamine (5-HT) on free cytoplasmic calcium concentration ([Ca2+]i) in smooth muscle cells (SMCs) isolated from rat aorta and on aorta contraction. To address this issue, the NAADP structural analogue and inhibitor of TPCs, NED 19, was applied. We have demonstrated a high degree of colocalization of the fluorescent signals of cis-NED 19 and endolysosmal probe LysoTracker in SMCs. Both cis- or trans-NED 19 inhibited the rise of [Ca2+]i in SMCs induced by 100 μM NE by 50–60%. IC50 for cis- and trans-NED 19 were 2.7 and 8.9 μM, respectively. The inhibition by NED 19 stereoisomers of the effects of AngII, AVP, and 5-HT was much weaker. Both forms of NED 19 caused relaxation of aortic rings preconstricted by NE, with relative potency of cis-NED 19 several times higher than that of trans-NED 19. Inhibition by cis-NED 19 of NE-induced contraction was maintained after intensive washing and slowly reversed within an hour of incubation. Cis- and trans-NED 19 did not cause decrease in the force of aorta contraction in response to Ang II and AVP, and only slightly relaxed aorta preconstricted by 5-HT and by KCl. Suppression of TPC1 in SMCs with siRNA caused a 40% decrease in [Ca2+]i in response to NE, whereas siRNA against TPC2 did not change NE calcium signaling. These data suggest that TPC1 is involved in the NE-stimulated [Ca2+]i rise in SMCs. Inhibition of TPC1 activity by NED 19 could be the reason for partial inhibition of aortic rings contraction in response to NE.


2000 ◽  
Vol 279 (1) ◽  
pp. F92-F101 ◽  
Author(s):  
Michel Bidet ◽  
Guy De Renzis ◽  
Sonia Martial ◽  
Isabelle Rubera ◽  
Michel Tauc ◽  
...  

Experiments were performed to characterize the P2 purinoceptor subtype responsible for cytoplasmic calcium mobilization in cells from the initial part of rabbit distal convoluted tubule (DCT). Free calcium concentration was measured in a DCT cell line (DC1) with the probe fura 2. Both ATP and UTP increased cytosolic Ca2+ concentration ([Ca2+]i; EC50 3 and 6 μM, respectively). The order of potency for nucleotide analogs was ATP = UTP > adenosine 5′- O-[thiotriphosphate] ≫ ADP > UDP, which is consistent with the pharmacology of the P2Y2 receptor subtype. The increased [Ca2+]iresponses to ATP and UTP were strongly inhibited by suramin. Pretreatment of cells with pertussis toxin (PTX) attenuated the action of both nucleotides. Inhibition of phospholipase C with U-73122 totally blocked the [Ca2+]i response to ATP. Thus ATP- and UTP-stimulated [Ca2+]i mobilization in DC1 cells appears to be mediated via the activation of P2Y2 purinoceptors coupled to a G protein mechanism that is partially sensitive to PTX. Calcium flux measurements showed that lanthanum- and nifedipine-sensitive calcium channels are involved in the [Ca2+]i response to ATP.


1980 ◽  
Vol 35 (3-4) ◽  
pp. 308-318 ◽  
Author(s):  
H. Stieve ◽  
I. Claßen-Linke

Abstract The electroretinogram (ERG) of the isolated retina of the crayfish Astacus leptodactylus evoked by strong 10 ms light flashes at constant 5 min intervals was measured while the retina was continuously superfused with various salines which differed in Ca2+ -and Na+ -concentrations. The osmotic pressure of test- and reference-saline was adjusted to be identical by adding sucrose. Results: 1. Upon raising the calcium-concentration of the superfusate in the range of 20-150 mmol/l (constant Na+ -concentration: 208 mmol/l) the peak amplitude hmax and the half time of decay t2 of the ERG both decrease gradually up to about 50% in respect to the corresponding value in reference saline. 2. The recovery of the ERG due to dark adaptation following the “weakly light adapted state” is greatly diminished in high external [Ca2+]ex. 3. Lowering the external calcium-concentration (10 →1 mmol/l) causes a small increase in hmax and a strong increase of the half time of decay t2 (about 180%). Upon lowering the calcium concentration of the superfusate to about 1 nmol/l by 1 mmol/l of the calcium buffer EDTA, a slowly augmenting diminution of the ERG height hm SLX occurs. How­ever, a strong retardation of the falling phase of the ERG characterized by an increase in t2 occurs quickly. Even after 90 min stay in the low calcium saline the retina is still not inexcitable; hmax is 5 - 10% of the reference value. The diminution of hmax occurs about six-fold faster when the buffer concentration is raised to 10 mmol/l EDTA. 4. Additional lowering of the Na+ -concentration (208 →20.8 mmol/l) in a superfusate with a calcium concentration raised to 150 mmol/l causes a strong reduction of the ERG amplitude hmax to about 10%. 5. In a superfusate containing 1 nmol/l calcium such lowering of the sodium concentration (208 → 20.8 mmol/l) causes a diminution of the ERG height to about 40% and the shape of the ERG to become polyphasic; at least two maxima with different time to peak values are observed. Interpretation: 1. The similarity of effects, namely raising external calcium concentration and light adaptation on the one hand and lowering external calcium and dark adaptation on the other hand may indicate that the external calcium is acting on the adaptation mechanism of the photoreceptor cells, presumably by influencing the intracellular [Ca2+]. 2. The great tolerance of the retina against Ca2+ -deficiency in the superfusate might be effected by calcium stores in the retina which need high Ca2+ -buffer concentrations in the superfusate to become exhausted. 3. In contrast to the Limulus ventral nerve photoreceptor there does not seem to be an antagonis­ tic effect of sodium and calcium in the crayfish retina on the control of the light channels. 4. The crayfish receptor potential seems to be composed of at least two different processes. Lowering calcium-and lowering external sodium-concentration both diminish the height and change the time course of the two components to a different degree. This could be caused by in­ fluencing the state of adaptation and thereby making the two maxima separately visible.


Sign in / Sign up

Export Citation Format

Share Document