Methods of the Classical Theory of Elastodynamics

Author(s):  
Vladimir B. Poruchikov
Keyword(s):  
2013 ◽  
Author(s):  
Liu-Qin Yang ◽  
Robert R. Wright ◽  
Liu-Qin Yang ◽  
Lisa M. Kath ◽  
Michael T. Ford ◽  
...  

Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


2021 ◽  
pp. 108128652110015
Author(s):  
YL Qu ◽  
GY Zhang ◽  
YM Fan ◽  
F Jin

A new non-classical theory of elastic dielectrics is developed using the couple stress and electric field gradient theories that incorporates the couple stress, quadrupole and curvature-based flexoelectric effects. The couple stress theory and an extended Gauss’s law for elastic dielectrics with quadrupole polarization are applied to derive the constitutive relations of this new theory through energy conservation. The governing equations and the complete boundary conditions are simultaneously obtained through a variational formulation based on the Gibbs-type variational principle. The constitutive relations of general anisotropic and isotropic materials with the corresponding independent material constants are also provided, respectively. To illustrate the newly proposed theory and to show the flexoelectric effect in isotropic materials, one pure bending problem of a simply supported beam is analytically solved by directly applying the formulas derived. The analytical results reveal that the flexoelectric effect is present in isotropic materials. In addition, the incorporation of both the couple stress and flexoelectric effects always leads to increased values of the beam bending stiffness.


Sign in / Sign up

Export Citation Format

Share Document