The Response and Vulnerability of Cerebral Blood Vessels to Fetal Hypoxemia

Author(s):  
M. Kirschbaum ◽  
A. Kriete ◽  
R. H. Bödeker ◽  
W. Künzel
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Davide Di Bella ◽  
João P. S. Ferreira ◽  
Renee de Nazare O. Silva ◽  
Cinthya Echem ◽  
Aline Milan ◽  
...  

Abstract Background Sepsis is an emergency medical condition that can lead to death and it is defined as a life-threatening organ dysfunction caused by immune dysregulation in response to an infection. It is considered the main killer in intensive care units. Sepsis associated-encephalopathy (SAE) is mostly caused by a sepsis-induced systemic inflammatory response. Studies report SAE in 14–63% of septic patients. Main SAE symptoms are not specific and usually include acute impairment of consciousness, delirium and/or coma, along with electroencephalogram (EEG) changes. For those who recover from sepsis and SAE, impaired cognitive function, mobility and quality of life are often observed months to years after hospital discharge, and there is no treatment available today to prevent that. Inflammation and oxidative stress are key players for the SAE pathophysiology. Gold nanoparticles have been demonstrated to own important anti-inflammatory properties. It was also reported 20 nm citrate-covered gold nanoparticles (cit-AuNP) reduce oxidative stress. In this context, we tested whether 20 nm cit-AuNP could alleviate the acute changes caused by sepsis in brain of mice, with focus on inflammation. Sepsis was induced in female C57BL/6 mice by cecal ligation and puncture (CLP), 20 nm cit-AuNP or saline were intravenously (IV) injected 2 h after induction of sepsis and experiments performed 6 h after induction. Intravital microscopy was used for leukocyte and platelet adhesion study in brain, blood brain barrier (BBB) permeability carried out by Evans blue assay, cytokines measured by ELISA and real time PCR, cell adhesion molecules (CAMs) by flow cytometry and immunohistochemistry, and transcription factors, by western blotting. Results 20 nm cit-AuNP treatment reduced leukocyte and platelet adhesion to cerebral blood vessels, prevented BBB failure, reduced TNF- concentration in brain, and ICAM-1 expression both in circulating polymorphonuclear (PMN) leukocytes and cerebral blood vessels of mice with sepsis. Furthermore, 20 nm cit-AuNP did not interfere with the antibiotic effect on the survival rate of mice with sepsis. Conclusions Cit-AuNP showed important anti-inflammatory properties in the brain of mice with sepsis, being a potential candidate to be used as adjuvant drug along with antibiotics in the treatment of sepsis to avoid SAE


1971 ◽  
Vol 6 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Ajax Elis George ◽  
Pulla R.S. Kishore ◽  
Norman E. Chase

2003 ◽  
Vol 284 (1) ◽  
pp. E184-E192 ◽  
Author(s):  
Chris Stirone ◽  
Sue P. Duckles ◽  
Diana N. Krause

The cerebral vasculature is an important target tissue for estrogen, as evidenced by significant effects of estrogen on vascular reactivity and protein levels of endothelial nitric oxide synthase and prostacyclin synthase. However, the presence, localization, and regulation of estrogen receptors in the cerebral vasculature have not been investigated. In this study, we identified the presence of estrogen receptor-α (ER-α) in female rat cerebral blood vessels and localized this receptor to both smooth muscle and endothelial cells by use of immunohistochemistry and confocal microscopy. With immunoblot analysis, multiple forms of ER-α were detected at 110, 93, 82, 50, and 45 kDa in addition to a relatively weak band corresponding to the 66-kDa putative unmodified receptor. The 82-kDa band was identified as Ser118-phosphorylated ER-α, whereas the 50-kDa band lacks the normal NH2 terminus, suggestive of an ER-α splice variant. Lower molecular mass bands persisted after in vivo inhibition of 26S proteasome activity with lactacystin, whereas the 110- and 93-kDa bands increased. All forms of ER-α in cerebral vessels were decreased after ovariectomy but significantly increased after chronic estrogen exposure in vivo.


1995 ◽  
Vol 26 (3) ◽  
pp. 511-515 ◽  
Author(s):  
Hiroshi Ohtani ◽  
Hirokazu Imai ◽  
Tadashi Yasuda ◽  
Hideki Wakui ◽  
Atsushi Komatsuda ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


Stroke ◽  
2002 ◽  
Vol 33 (11) ◽  
pp. 2704-2710 ◽  
Author(s):  
Roland Veltkamp ◽  
Nishadi Rajapakse ◽  
Greg Robins ◽  
Michelle Puskar ◽  
Katsuyoshi Shimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document