cerebral vasculature
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 72)

H-INDEX

50
(FIVE YEARS 4)

Development ◽  
2022 ◽  
Author(s):  
E. C. Kugler ◽  
J. Frost ◽  
V. Silva ◽  
K. Plant ◽  
K. Chhabria ◽  
...  

Zebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification “ZVQ”. It provides the first landmark- or object-based vascular inter-sample registration of the zebrafish cerebral vasculature, producing Population Average Maps allowing rapid assessment of intra- and inter-group vascular anatomy. ZVQ also extracts a range of quantitative vascular parameters from a user-specified Region of Interest including volume, surface area, density, branching points, length, radius, and complexity. Application of ZVQ to thirteen experimental conditions, including embryonic development, pharmacological manipulations and morpholino induced gene knockdown, shows ZVQ is robust, allows extraction of biologically relevant information and quantification of vascular alteration, and can provide novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface, and workflow documentation are provided. Together, ZVQ provides the first open-source quantitative approach to assess the 3D cerebrovascular architecture in zebrafish.


2022 ◽  
pp. 110896
Author(s):  
Kevin M. Moerman ◽  
Praneeta Konduri ◽  
Behrooz Fereidoonnezhad ◽  
Henk Marquering ◽  
Aad van der Lugt ◽  
...  

Author(s):  
Aravind Sundaramurthy ◽  
Vivek Bhaskar Kote ◽  
Noah Pearson ◽  
Gregory M. Boiczyk ◽  
Elizabeth M. McNeil ◽  
...  

Despite years of research, it is still unknown whether the interaction of explosion-induced blast waves with the head causes injury to the human brain. One way to fill this gap is to use animal models to establish “scaling laws” that project observed brain injuries in animals to humans. This requires laboratory experiments and high-fidelity mathematical models of the animal head to establish correlates between experimentally observed blast-induced brain injuries and model-predicted biomechanical responses. To this end, we performed laboratory experiments on Göttingen minipigs to develop and validate a three-dimensional (3-D) high-fidelity finite-element (FE) model of the minipig head. First, we performed laboratory experiments on Göttingen minipigs to obtain the geometry of the cerebral vasculature network and to characterize brain-tissue and vasculature material properties in response to high strain rates typical of blast exposures. Next, we used the detailed cerebral vasculature information and species-specific brain tissue and vasculature material properties to develop the 3-D high-fidelity FE model of the minipig head. Then, to validate the model predictions, we performed laboratory shock-tube experiments, where we exposed Göttingen minipigs to a blast overpressure of 210 kPa in a laboratory shock tube and compared brain pressures at two locations. We observed a good agreement between the model-predicted pressures and the experimental measurements, with differences in maximum pressure of less than 6%. Finally, to evaluate the influence of the cerebral vascular network on the biomechanical predictions, we performed simulations where we compared results of FE models with and without the vasculature. As expected, incorporation of the vasculature decreased brain strain but did not affect the predictions of brain pressure. However, we observed that inclusion of the cerebral vasculature in the model changed the strain distribution by as much as 100% in regions near the interface between the vasculature and the brain tissue, suggesting that the vasculature does not merely decrease the strain but causes drastic redistributions. This work will help establish correlates between observed brain injuries and predicted biomechanical responses in minipigs and facilitate the creation of scaling laws to infer potential injuries in the human brain due to exposure to blast waves.


2021 ◽  
Author(s):  
Shubham Mirg ◽  
Haoyang Chen ◽  
Kevin L. Turner ◽  
Jinyun Liu ◽  
Bruce J. Gluckman ◽  
...  

AbstractOptical resolution photoacoustic microscopy (OR-PAM) can map the cerebral vasculature at capillary level resolution. However, the OR-PAM setup’s bulky imaging head makes awake mouse brain imaging challenging and inhibits its integration with other optical neuroimaging modalities. Moreover, the glass cranial windows used for optical microscopy are unsuitable for OR-PAM due to the acoustic impedance mismatch between the glass plate and the tissue. To overcome these challenges, we propose a lithium niobate based transparent ultrasound trans-ducer (TUT) as a cranial window on a thinned mouse skull. The TUT cranial window simplifies the imaging head considerably due to its dual functionality as an optical window and ultrasound transducer. The window remains stable for six weeks, with no noticeable inflammation and minimal bone regrowth. The TUT window’s potential is demonstrated by imaging the awake mouse cerebral vasculature using OR-PAM, intrinsic optical signal imaging and two-photon microscopy. The TUT cranial window can potentially also be used for ultrasound stimulation and simultaneous multimodal imaging of the awake mouse brain.


Author(s):  
Dhananjay Radhakrishnan Subramaniam ◽  
Ginu Unnikrishnan ◽  
Aravind Sundaramurthy ◽  
Jose E. Rubio ◽  
Vivek Bhaskar Kote ◽  
...  

Multiple finite-element (FE) models to predict the biomechanical responses in the human brain resulting from the interaction with blast waves have established the importance of including the brain-surface convolutions, the major cerebral veins, and using non-linear brain-tissue properties to improve model accuracy. We hypothesize that inclusion of a more detailed network of cerebral veins and arteries can further enhance the model-predicted biomechanical responses and help identify correlates of blast-induced brain injury. To more comprehensively capture the biomechanical responses of human brain tissues to blast-wave exposure, we coupled a three-dimensional (3-D) detailed-vasculature human-head FE model, previously validated for blunt impact, with a 3-D shock-tube FE model. Using the coupled model, we computed the biomechanical responses of a human head facing an incoming blast wave for blast overpressures (BOPs) equivalent to 68, 83, and 104 kPa. We validated our FE model, which includes the detailed network of cerebral veins and arteries, the gyri and the sulci, and hyper-viscoelastic brain-tissue properties, by comparing the model-predicted intracranial pressure (ICP) values with previously collected data from shock-tube experiments performed on cadaver heads. In addition, to quantify the influence of including a more comprehensive network of brain vessels, we compared the biomechanical responses of our detailed-vasculature model with those of a reduced-vasculature model and a no-vasculature model for the same blast-loading conditions. For the three BOPs, the predicted ICP values matched well with the experimental results in the frontal lobe, with peak-pressure differences of 4–11% and phase-shift differences of 9–13%. As expected, incorporating the detailed cerebral vasculature did not influence the ICP, however, it redistributed the peak brain-tissue strains by as much as 30% and yielded peak strain differences of up to 7%. When compared to existing reduced-vasculature FE models that only include the major cerebral veins, our high-fidelity model redistributed the brain-tissue strains in most of the brain, highlighting the importance of including a detailed cerebral vessel network in human-head FE models to more comprehensively account for the biomechanical responses induced by blast exposure.


Author(s):  
Carson E. Finger ◽  
Ines Moreno-Gonzalez ◽  
Antonia Gutierrez ◽  
Jose Felix Moruno-Manchon ◽  
Louise D. McCullough

AbstractAging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world’s population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.


2021 ◽  
Author(s):  
Marc Vervuurt ◽  
Xiaoyue Zhu ◽  
Joseph Schrader ◽  
Anna de Kort ◽  
Tainá Marques ◽  
...  

Abstract Objective: To study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA) in a rat model for CAA type-I (rTg-DI) and in patients with sporadic (sCAA) and Dutch-type hereditary CAA (D-CAA). Additionally, to investigate the potential of uPA to serve as a diagnostic biomarker of CAA in cerebrospinal fluid (CSF) from patients with sCAA and D-CAA.Methods: We studied the expression of uPA mRNA by qPCR and co-localization of uPA with amyloid-β (Aβ) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared to wild type (WT) rats and in an sCAA patient and control subject using immunohistochemistry. CSF levels of uPA were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and D-CAA patients and controls, using enzyme-linked immunosorbent assays (ELISA).Results: The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient, but not in WT rats or a non-CAA human control. uPA expression was highly co-localized with microvascular Aβ deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular CAA deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared to WT rats. CSF uPA levels were elevated in rTg-DI rats compared to WT rats (p=0.03), and in two separate, independent groups of sCAA patients compared to controls (after adjustment for age of subjects, p=0.05 and p=0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p=0.09 and p=0.44).Conclusion: uPA expression appears linked to the onset of CAA in rTg-DI rats. Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA. No differential expression levels of uPA in CSF of (a)symptomatic D-CAA patients were discovered. These studies also further support the use of rTg-DI rat models as a useful preclinical model for the study of human CAA type-I.


2021 ◽  
pp. 247-260
Author(s):  
Kevin Sunderland ◽  
Feng Zhao ◽  
Jingfeng Jiang
Keyword(s):  

2021 ◽  
Vol 118 (34) ◽  
pp. e2021840118
Author(s):  
Yujia Qi ◽  
Marcus Roper

The energy demands of neurons are met by a constant supply of glucose and oxygen via the cerebral vasculature. The cerebral cortex is perfused by dense, parallel arterioles and venules, consistently in imbalanced ratios. Whether and how arteriole–venule arrangement and ratio affect the efficiency of energy delivery to the cortex has remained an unanswered question. Here, we show by mathematical modeling and analysis of the mapped mouse sensory cortex that the perfusive efficiency of the network is predicted to be limited by low-flow regions produced between pairs of arterioles or pairs of venules. Increasing either arteriole or venule density decreases the size of these low-flow regions, but increases their number, setting an optimal ratio between arterioles and venules that matches closely that observed across mammalian cortical vasculature. Low-flow regions are reshaped in complex ways by changes in vascular conductance, creating geometric challenges for matching cortical perfusion with neuronal activity.


Sign in / Sign up

Export Citation Format

Share Document