Shock Tube Application to the Study of Compressible Turbulent Boundary Layer with Mass Injection

1995 ◽  
pp. 105-110
Author(s):  
J.-Y. Liaw ◽  
D. Bershader
AIAA Journal ◽  
1965 ◽  
Vol 3 (5) ◽  
pp. 960-961
Author(s):  
PETER JEANMAIRE ◽  
ERIC F. BROCKER

1974 ◽  
Vol 64 (4) ◽  
pp. 763-774 ◽  
Author(s):  
R. G. Deissler

The early and intermediate development of a highly accelerated (or decelerated) turbulent boundary layer is analysed. For sufficiently large accelerations (or pressure gradients) and for total normal strains which are not excessive, the equation for the Reynolds shear stress simplifies to give a stress that remains approximately constant as it is convected along streamlines. The theoretical results for the evolution of the mean velocity in favourable and adverse pressure gradients agree well with experiment for the cases considered. A calculation which includes mass injection at the wall is also given.


1962 ◽  
Vol 12 (3) ◽  
pp. 417-437 ◽  
Author(s):  
Norman G. Kulgein

Coexistent processes of heat, mass and momentum transfer operative within a combustible turbulent boundary layer have been experimentally investigated. The boundary layer was established on a porous cylinder mounted in a low-speed wind tunnel with its long axis in the flow direction. Methane was transpired into the boundary layer and ignited. Results indicate that the dimensionless transfer numbers corresponding to the three transfer processes can be correlated by the formula 0.038Re−0.2 to within ± 30% of measured values so that a rough numerical analogy exists among all three processes. The effect of mass injection on the skin friction coefficient is reasonably well accounted for by available theory. No effect of mass injection was found on the values of heat and mass transfer parameters. Finally, there was a lack of evidence indicating any sort of reaction-generated turbulence or that the experimentally demonstrated disturbance of the viscous layer by mass injection substantially affected the transport phenomena.


Sign in / Sign up

Export Citation Format

Share Document