Translation of Encephalomyocarditis Virus RNA by Internal Ribosomal Entry

Author(s):  
C. U. T. Hellen ◽  
E. Wimmer
1996 ◽  
Vol 16 (12) ◽  
pp. 6859-6869 ◽  
Author(s):  
T V Pestova ◽  
C U Hellen ◽  
I N Shatsky

Translation of picornavirus RNA is initiated after ribosomal binding to an internal ribosomal entry site (IRES) within the 5' untranslated region. We have reconstituted IRES-mediated initiation on encephalomyocarditis virus RNA from purified components and used primer extension analysis to confirm the fidelity of 48S preinitiation complex formation. Eukaryotic initiation factor 2 (eIF2), eIF3, and eIF4F were required for initiation; eIF4B and to a lesser extent the pyrimidine tract-binding protein stimulated this process. We show that eIF4F binds to the IRES in a novel cap-independent manner and suggest that cap- and IRES-dependent initiation mechanisms utilize different modes of interaction with this factor to promote ribosomal attachment to mRNA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Siang Su ◽  
Lih-Hwa Hwang ◽  
Chi-Ju Chen

Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot, and mouth disease (HFMD) in children. Its infection can lead to severe neurological diseases or even death in some cases. While being produced in a large quantity during infection, viral proteins often require the assistance from cellular chaperones for proper folding. In this study, we found that heat shock protein A6 (HSPA6), whose function in viral life cycle is scarcely studied, was induced and functioned as a positive regulator for EV-A71 infection. Depletion of HSPA6 led to the reductions of EV-A71 viral proteins, viral RNA and virions as a result of the downregulation of internal ribosomal entry site (IRES)-mediated translation. Unlike other HSP70 isoforms such as HSPA1, HSPA8, and HSPA9, which regulate all phases of the EV-A71 life, HSPA6 was required for the IRES-mediated translation only. Unexpectedly, the importance of HSPA6 in the IRES activity could be observed in the absence of viral proteins, suggesting that HSPA6 facilitated IRES activity through cellular factor(s) instead of viral proteins. Intriguingly, the knockdown of HSPA6 also caused the reduction of luciferase activity driven by the IRES from coxsackievirus A16, echovirus 9, encephalomyocarditis virus, or hepatitis C virus, supporting that HSPA6 may assist the function of a cellular protein generally required for viral IRES activities.


Intervirology ◽  
1975 ◽  
Vol 6 (6) ◽  
pp. 367-371 ◽  
Author(s):  
Marie-Lou Giron ◽  
Frédérique Logeat ◽  
Nicole Hanania ◽  
Nicole Fossar ◽  
J. Huppert

FEBS Letters ◽  
1990 ◽  
Vol 261 (2) ◽  
pp. 237-240 ◽  
Author(s):  
A.V. Borovjagin ◽  
A.G. Evstafieva ◽  
T.Yu. Ugarova ◽  
I.N. Shatsky

Sign in / Sign up

Export Citation Format

Share Document