Three-Dimensional Cumulus Cloud Convection

Author(s):  
U. Schumann
2008 ◽  
Vol 65 (11) ◽  
pp. 3497-3512 ◽  
Author(s):  
Patrick C. Taylor ◽  
Robert G. Ellingson

Abstract The plane-parallel horizontal (PPH) hypothesis used to approximate clouds in GCMs neglects three-dimensional cloud effects. Such effects can amount to as much as 20 W m−2 in longwave radiation. Several investigators have proposed accounting for longwave three-dimensional cloud effects by using information on the probability of clear line of sight (PCLoS) to modify the PPH approximation. This study investigates the PCLoS at the Atmosphere Radiation Measurement (ARM) Program’s Tropical Western Pacific (TWP) site. PCLoS is estimated for single-layer tropical marine cumulus cases for 2-h intervals using the Whole Sky Imager (WSI) observations at the Manus and Nauru sites. PCLoS estimates are compared to calculations from a set of simple PCLoS models using measured cloud field statistics as input. A summary of the PCLoS at the TWP site is presented in addition to a statistical summary of retrieved cloud field characteristics. The results are used to investigate the spatial variability of the PCLoS and to test the usefulness of the parameterization of effective cloud fraction.


2007 ◽  
Vol 64 (10) ◽  
pp. 3499-3520 ◽  
Author(s):  
Laura M. Hinkelman ◽  
K. Franklin Evans ◽  
Eugene E. Clothiaux ◽  
Thomas P. Ackerman ◽  
Paul W. Stackhouse

Abstract Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce 20 three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x–z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-averaged transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction (i.e., the cloud fraction with respect to the solar beam direction).


2019 ◽  
Vol 76 (6) ◽  
pp. 1489-1503 ◽  
Author(s):  
R. A. J. Neggers ◽  
P. J. Griewank ◽  
T. Heus

Abstract In this study, the spatial structure of cumulus cloud populations is investigated using three-dimensional snapshots from large-domain LES experiments. The aim is to understand and quantify the internal variability in cloud size distributions due to subsampling effects and spatial organization. A set of idealized shallow cumulus cases is selected with varying degrees of spatial organization, including a slowly organizing marine precipitating case and five more quickly organizing diurnal cases over land. A subdomain analysis is applied, yielding cloud number distributions at sample sizes ranging from severely undersampled to nearly complete. A strong power-law scaling is found in the relation between cloud number variability and subdomain size, reflecting an inverse linear relation. Scaling subdomain size by cloud size yields a data collapse across time points and cases, highlighting the role played by cloud spacing in controlling the stochastic variability. Spatial organization acts on top of this baseline model by increasing the maximum cloud size and by enhancing the variability in the number of smallest clouds. This reflects that the smaller clouds start to live on top of larger-scale thermodynamic structures, such as cold pools, which favor or inhibit their formation. Compositing all continental cumulus cases suggests the existence of a prototype diurnal time dependence in the spatial organization. A simple stochastic expression for cloud number variability is proposed that is formulated in terms of two dimensionless groups, which allows objective estimation of the degree of spatial organization in simulated and observed cumulus cloud populations.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Sign in / Sign up

Export Citation Format

Share Document