A Hierarchical Approach to the Placement Problem

Author(s):  
Maria Rosália Dinis Rodrigues
Author(s):  
Dawn N. Castillo ◽  
Timothy J. Pizatella ◽  
Nancy A. Stout

This chapter describes occupational injuries and their prevention. It describes in detail the causes of injuries and epidemiology of injuries. Occupational injuries are caused by acute exposure in the workplace to safety hazards, such as mechanical energy, electricity, chemicals, and ionizing radiation, or from the sudden lack of essential agents, such as oxygen or heat. This chapter describes the nature and the magnitude of occupational injuries in the United States. It provides data on risk of injuries in different occupations and industries. Finally, it discusses prevention of injuries, using a hierarchical approach to occupational injury control.


2021 ◽  
Vol 13 (sup1) ◽  
pp. S97-S99
Author(s):  
Kurt E. Beschorner ◽  
Emily E. Meehan ◽  
Arian Iraqi ◽  
Sarah L. Hemler

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 323
Author(s):  
Marwa A. Abdelaal ◽  
Gamal A. Ebrahim ◽  
Wagdy R. Anis

The widespread adoption of network function virtualization (NFV) leads to providing network services through a chain of virtual network functions (VNFs). This architecture is called service function chain (SFC), which can be hosted on top of commodity servers and switches located at the cloud. Meanwhile, software-defined networking (SDN) can be utilized to manage VNFs to handle traffic flows through SFC. One of the most critical issues that needs to be addressed in NFV is VNF placement that optimizes physical link bandwidth consumption. Moreover, deploying SFCs enables service providers to consider different goals, such as minimizing the overall cost and service response time. In this paper, a novel approach for the VNF placement problem for SFCs, called virtual network functions and their replica placement (VNFRP), is introduced. It tries to achieve load balancing over the core links while considering multiple resource constraints. Hence, the VNF placement problem is first formulated as an integer linear programming (ILP) optimization problem, aiming to minimize link bandwidth consumption, energy consumption, and SFC placement cost. Then, a heuristic algorithm is proposed to find a near-optimal solution for this optimization problem. Simulation studies are conducted to evaluate the performance of the proposed approach. The simulation results show that VNFRP can significantly improve load balancing by 80% when the number of replicas is increased. Additionally, VNFRP provides more than a 54% reduction in network energy consumption. Furthermore, it can efficiently reduce the SFC placement cost by more than 67%. Moreover, with the advantages of a fast response time and rapid convergence, VNFRP can be considered as a scalable solution for large networking environments.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2400
Author(s):  
Ziyong Zhang ◽  
Xiaoling Xu ◽  
Jinqiang Cui ◽  
Wei Meng

This paper is concerned with relative localization-based optimal area coverage placement using multiple unmanned aerial vehicles (UAVs). It is assumed that only one of the UAVs has its global position information before performing the area coverage task and that ranging measurements can be obtained among the UAVs by using ultra-wide band (UWB) sensors. In this case, multi-UAV relative localization and cooperative coverage control have to be run simultaneously, which is a quite challenging task. In this paper, we propose a single-landmark-based relative localization algorithm, combined with a distributed coverage control law. At the same time, the optimal multi-UAV placement problem was formulated as a quadratic programming problem by compromising between optimal relative localization and optimal coverage control and was solved by using Sequential Quadratic Programming (SQP) algorithms. Simulation results show that our proposed method can guarantee that a team of UAVs can efficiently localize themselves in a cooperative manner and, at the same time, complete the area coverage task.


Sign in / Sign up

Export Citation Format

Share Document