Modal Analysis for Random Response of MDOF Systems

Author(s):  
M. Di Paola ◽  
G. Falsone ◽  
G. Muscolino ◽  
G. Ricciardi
2000 ◽  
Vol 7 (4) ◽  
pp. 229-240 ◽  
Author(s):  
Y.H. Chong ◽  
M. Imregun

The purpose of Part II is to provide an experimental validation of the methodology presented in Part I and to consider a representative engineering case, the study of which requires a relatively large numerical model. A beam system with cubic stiffness type non-linearity was used in the experimental study. The non-linear response was measured at three locations and the underlying linear system was obtained via linear modal analysis of low-excitation response data. The non-linear parameter variations were obtained as a function of the modal amplitude and the response of the system was generated for other force levels. The results were found to agree very well with the corresponding measurements, indicating the success of the non-linear modal analysis methodology, even in the presence of true experimental noise. An advanced numerical case study that included both inherent structural damping and non-linear friction damping, was considered next. The linear finite element model of a high-pressure turbine blade was used in conjunction with three local non-linear friction damper elements. It was shown that the response of the system could be predicted at any force level, provided that that non-linear modal parameters were available at some reference force level. The predicted response levels were compared against those obtained from reference simulations and very good agreement was achieved in all cases.


2000 ◽  
Vol 7 (4) ◽  
pp. 217-227 ◽  
Author(s):  
Y.H. Chong ◽  
M. Imregun

This paper deals with the formulation of a frequency domain modal analysis technique that is applicable to weakly non-linear multi-degree of freedom (MDOF) systems with well-separated modes. The concept of linear modal superposition is combined with the normal non-linear mode technique, an approach that allows the formulation of a system identification procedure in terms of variable modal parameters. The numerical study was focused on a 4-DOF system with cubic stiffness non-linearity, and the modal parameters were obtained as functions of the modal amplitude. It was shown that the methodology was well suited to the study of practical cases for which the underlying linear model may be approximate. Similarly, the technique was found to be robust in the presence of measurement noise, though some adverse effects were observed for high noise levels. Once the variable modal parameters were extracted at some given force level, the non-linear responses were predicted at other force levels via synthesis of normal non-linear modes. The same responses were also obtained using a harmonic balance approach and very good agreement was obtained between the two sets of results. The procedure is well suited to the study of industrial cases because of its compatibility with existing finite element methods and linear modal analysis techniques.


2019 ◽  
Vol 35 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Tour Liu ◽  
Tian Lan ◽  
Tao Xin

Abstract. Random response is a very common aberrant response behavior in personality tests and may negatively affect the reliability, validity, or other analytical aspects of psychological assessment. Typically, researchers use a single person-fit index to identify random responses. This study recommends a three-step person-fit analysis procedure. Unlike the typical single person-fit methods, the three-step procedure identifies both global misfit and local misfit individuals using different person-fit indices. This procedure was able to identify more local misfit individuals than single-index method, and a graphical method was used to visualize those particular items in which random response behaviors appear. This method may be useful to researchers in that it will provide them with more information about response behaviors, allowing better evaluation of scale administration and development of more plausible explanations. Real data were used in this study instead of simulation data. In order to create real random responses, an experimental test administration was designed. Four different random response samples were produced using this experimental system.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020100
Author(s):  
Nasser Heydari ◽  
Panayiotis Diplas ◽  
J. Nathan Kutz ◽  
Soheil Sadeghi Eshkevari

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Sign in / Sign up

Export Citation Format

Share Document