Closure of Posterior Neuropore; Hind Limb Bud and Tail Bud

1989 ◽  
pp. 60-65 ◽  
Author(s):  
Karl Theiler
Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Development ◽  
1973 ◽  
Vol 29 (1) ◽  
pp. 221-237
Author(s):  
J. Geraudie ◽  
Y. François

The first stages of genesis of the pelvic fin Anlage in the Trout (Salmo fario and S. gairdneri). I. Anatomical study The Anlage of the pelvic fins appears in Salmo 2 weeks after the fecundation day, at the level of the somites 23–26. The mesoderm has a double origin and seems to differ in this regard from the hind limb of most of the amniotes. The ‘initial mesenchyme’ comes from the local proliferation of the somatopleura. It will give essentially the skeletal components of dermal origin (actinotrichia and lepidotrichia). The ‘secondary mesenchyme’ is obtained by the dispersion of four ventral somitic processes that have reached and entered the initial mesenchyme blastema. The secondary mesenchyme will probably give the muscles and also the endoskeleton of the fin. The origin of the girdle is not clear. When the setting of the initial mesenchyme begins the epithelium that covers the embryo is already differentiated in an epiderm with numerous mucous cells resting on a visible basement membrane. At the apex of the pelvic bud, a localized and transitory thickening of the epiderm is produced by the increase in the height of the basal stratum. We call this structure by the name of ‘pseudo apical cap’ to stress the fact that it must be distinguished from the ‘apical cap’ described for the limb bud of amniotes. So, the morphogenesis of the pelvic fins of Salmo shows some important particularities in the epiderm as well as in the mesoderm.


Development ◽  
1973 ◽  
Vol 30 (3) ◽  
pp. 673-679
Author(s):  
P. V. Thorogood

Myotubes are present in the developing hind limb of the embryonic chick at 5 days. An immunofluorescence technique was used to detect actomyosin within the myotubes. The earliest detectable appearance of this muscle protein was at six days of development, at sites located peripherally beneath the flattened dorsal and ventral surface of the limb. These dorsal and ventral loci are interpreted as representing the primordial extensor and flexor muscles. At the ultrastructural level the cytoplasm of the myotubes contains fibrillar components which are apparently aggregating to form myofibrils. A rudimentary banding pattern can be distinguished.


Development ◽  
1974 ◽  
Vol 32 (2) ◽  
pp. 355-363
Author(s):  
A. F. Hughes ◽  
R. B. Freeman

The development of the caudal region of the neural tube is compared in tailed mammals with that of the chick and human. In rat, mouse, opossum and pig, the lumen of the cord extends caudally in an even manner, whereas in the chick and in man the addition of small cavities to the lumen results in a phase of irregular growth. In mammals with unreduced tails, the site of closure of the posterior neuropore is at the tip of the tail, whereas in pig, man and in the chick closure occurs before the formation of the tail-bud. The teratological implications of these findings are discussed.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 681-691
Author(s):  
W.H. Chen ◽  
G.M. Morriss-Kay ◽  
A.J. Copp

A role for all-trans-retinoic acid in spinal neurulation is suggested by: (1) the reciprocal domains of expression of the retinoic acid receptors RAR-beta and RAR-gamma in the region of the closed neural tube and open posterior neuropore, respectively, and (2) the preventive effect of maternally administered retinoic acid (5 mg/kg) on spinal neural tube defects in curly tail (ct/ct) mice. Using in situ hybridisation and computerised image analysis we show here that in ct/ct embryos, RAR-beta transcripts are deficient in the hindgut endoderm, a tissue whose proliferation rate is abnormal in the ct mutant, and RAR-gamma transcripts are deficient in the tail bud and posterior neuropore region. The degree of deficiency of RAR-gamma transcripts is correlated with the severity of delay of posterior neuropore closure. As early as 2 hours following RA treatment at 10 days 8 hours post coitum, i.e. well before any morphogenetic effects are detectable, RAR-beta expression is specifically upregulated in the hindgut endoderm, and the abnormal expression pattern of RAR-gamma is also altered. These results suggest that the spinal neural tube defects which characterise the curly tail phenotype may be due to interaction between the ct gene product and one or more aspects of the retinoic acid signalling pathway.


Development ◽  
1981 ◽  
Vol 65 (1) ◽  
pp. 149-163
Author(s):  
Alan H. Lamb

Bilateral innervation of a single hindlimb bud was induced by amputating the other limb bud and disrupting the barriers between the two sides. Though the routes of the crossed nerves were necessarily abnormal, the motor projections that developed subsequently were normal as determined by horseradish peroxidase tracing. The limb therefore appears to be innervated selectively, each region being invaded and/or synapsed with only by motoneurones at particular locations. The numbers of motoneurones surviving after metamorphosis were almost normal on both sides provided the operation was done before motor invasion of the limb bud begins. From this it is argued that the axons were probably guided actively to their correct destinations. Without such guidance, axons would probably not have been able to find their correct termination sites and motoneurone survival would therefore have been depressed. The normal motoneurone numbers also imply that the single limb was supporting twice its usual quota of motoneurones. The hypothesis that motoneurones compete in the limb for survival is therefore not supported.


1946 ◽  
Vol 22 (3-4) ◽  
pp. 101-106
Author(s):  
WALTER BRANDT

1. A microscopical analysis was made concerning the differentiation of ectoderm cut from the tip of the tail-bud of an amphibian embryo (Amblystoma mexicanum, stages 35-37, Harrison) after its implantation into the primordium of the limb-bud of a host embryo 3-5 weeks after operation. 2. The ectoderm which lay deep in the tissues of the limb differentiated either into solid epithelial cords or into cysts. 3. The ectoderm which was attached outside the limb differentiated into notched ectodermal elevations which included a mesenchymal core. 4. A microscopical analysis was made concerning the development of deformities of limbs as the result of the operation. 5. The scapula may be divided into isolated pieces, bundles of muscle fibres separating the pieces from each other. 6. A supernumerary piece of cartilage can develop close to the cartilage of the scapula. 7. The suprascapula may be absent and its place taken by a mass of muscle fibres. 8. A phocomelias may be produced when the whole length of the humerus and the elbow-joint lies inside the body wall. In this case the implanted ectoderm covers the area where the limb would normally develop. 9. The humerus may be reduplicated. 10. The humerus may be too short. 11. The proximal half of the humerus may possess a diameter different from that of the distal half. 12. One skeletal element only of the forearm (radius or ulna) may be present when the place which would normally be occupied by one of these elements was taken by implanted ectoderm. 13. The elements of the carpus and of the hand may appear irregularly scattered throughout the tissues of the distal part of the limb. In these cases the implanted ectoderm was attached to the surface of the distal end of the limb. 14. The fingers can show: (a) abnormal positions, (b) abnormal numbers, (c) syndactylias, (d) one finger too long, others too short.


Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 755-768 ◽  
Author(s):  
L. Niswander ◽  
G.R. Martin

Fgf-4, initially isolated as a transforming gene from human tumors, is a member of the Fibroblast Growth Factor (FGF) family. It has previously been shown by northern blot hybridization analysis to be expressed in teratocarcinoma and embryonic stem cells, suggesting that it plays a role in embryonic development. We have carried out an RNA in situ hybridization analysis of Fgf-4 expression in the developing mouse embryo, from fertilization through the 14th day of gestation (E14.5). Our results show that Fgf-4 RNA is first detected at the late blastocyst stage in cells that give rise to all of the embryonic lineages (inner cell mass cells). During the early stages of gastrulation, expression becomes restricted to the primitive streak where mesoderm and definitive endoderm are formed. Expression continues in the distal (rostral) two-thirds of the streak through approx. E10, and then is detected in the tail bud, which replaces the streak as the primary source of mesoderm. Additional sites of expression are found after the three primary germ layers are established and organogenesis begins. Fgf-4 RNA is detected transiently in the branchial arch units, the somitic myotome, the apical ectodermal ridge of the developing limb bud and the tooth bud, suggesting that the gene has multiple roles during embryogenesis. These results are compared with the expression patterns of other FGF genes. Taken together, the data suggest that individual members of the gene family are expressed sequentially in developmental pathways such as mesoderm formation and myogenesis, and play a role in specific epithelial-mesenchymal interactions.


Development ◽  
1975 ◽  
Vol 33 (3) ◽  
pp. 581-606
Author(s):  
P. V. Thorogood ◽  
J. R. Hinchliffe

An analysis has been made of the pre-cartilaginous condensation stage in the development of the femur and tibia/fibula skeletal blastemata of the embryonic chick hind limb. Light microscopy serial sections were used to ‘map’ the mesenchymal cell condensations of both myogenic and chondrogenic anlagen in the limb-bud from stages 22 to 26 (Hamburger & Hamilton, 1951). Cell counts reveal that an increase in mesenchymal cell number per unit area occurs in the central chondrogenic locus at stage 24 (4½ days) prior to matrix formation. Electron microscopy, using a simultaneous double fixation with osmium and glutaraldehyde, reveals that the pre-chondrogenic cells are characterized by large areas of close surface contact between adjacent cells, as compared with the extensive intercellular spaces associated with undifferentiated mesenchymal cells. The results are discussed and related to other investigations of in vivo chondrogenesis and to analyses of cellular events during in vitro chondrogenesis. These observations are consistent with the theory that condensations are formed by a process of aggregation rather than by localized increased mitosis.


Sign in / Sign up

Export Citation Format

Share Document