Reynolds stress development in the viscous layer of a transitional boundary layer

2000 ◽  
pp. 327-332 ◽  
Author(s):  
S. Becker ◽  
K. G. Condie ◽  
C. M. Stoots ◽  
D. M. McEligot
AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1127-1129 ◽  
Author(s):  
Avi Seifert ◽  
Howard P. Hodson

2021 ◽  
Vol 918 ◽  
Author(s):  
Zachary R. Murphree ◽  
Christopher S. Combs ◽  
Wesley M. Yu ◽  
David S. Dolling ◽  
Noel T. Clemens

Abstract


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Maria Vera ◽  
Elena de la Rosa Blanco ◽  
Howard Hodson ◽  
Raul Vazquez

Research by de la Rosa Blanco et al. (“Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between the Pressure Surface Separation and the Endwall Flows,” Proc. Inst. Mech. Eng., Part A, 217, pp. 433–441) in a linear cascade of low pressure turbine (LPT) blades has shown that the position and strength of the vortices forming the endwall flows depend on the state of the inlet endwall boundary layer, i.e., whether it is laminar or turbulent. This determines, amongst other effects, the location where the inlet boundary layer rolls up into a passage vortex, the amount of fluid that is entrained into the passage vortex, and the interaction of the vortex with the pressure side separation bubble. As a consequence, the mass-averaged stagnation pressure loss and therefore the design of a LPT depend on the state of the inlet endwall boundary layer. Unfortunately, the state of the boundary layer along the hub and casing under realistic engine conditions is not known. The results presented in this paper are taken from hot-film measurements performed on the casing of the fourth stage of the nozzle guide vanes of the cold flow affordable near term low emission (ANTLE) LPT rig. These results are compared with those from a low speed linear cascade of similar LPT blades. In the four-stage LPT rig, a transitional boundary layer has been found on the platforms upstream of the leading edge of the blades. The boundary layer is more turbulent near the leading edge of the blade and for higher Reynolds numbers. Within the passage, for both the cold flow four-stage rig and the low speed linear cascade, the new inlet boundary layer formed behind the pressure leg of the horseshoe vortex is a transitional boundary layer. The transition process progresses from the pressure to the suction surface of the passage in the direction of the secondary flow.


2003 ◽  
Vol 125 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Ralph J. Volino ◽  
Michael P. Schultz ◽  
Christopher M. Pratt

Conditional sampling has been performed on data from a transitional boundary layer subject to high (initially 9%) freestream turbulence and strong (K=ν/U∞2dU∞/dx as high as 9×10−6) acceleration. Methods for separating the turbulent and nonturbulent zone data based on the instantaneous streamwise velocity and the turbulent shear stress were tested and found to agree. Mean velocity profiles were clearly different in the turbulent and nonturbulent zones, and skin friction coefficients were as much as 70% higher in the turbulent zone. The streamwise fluctuating velocity, in contrast, was only about 10% higher in the turbulent zone. Turbulent shear stress differed by an order of magnitude, and eddy viscosity was three to four times higher in the turbulent zone. Eddy transport in the nonturbulent zone was still significant, however, and the nonturbulent zone did not behave like a laminar boundary layer. Within each of the two zones there was considerable self-similarity from the beginning to the end of transition. This may prove useful for future modeling efforts.


2009 ◽  
Vol 6 (4) ◽  
pp. 211-218 ◽  
Author(s):  
C. Bolzmacher ◽  
X. Riedl ◽  
J. Leuckert ◽  
M. Engert ◽  
K. Bauer ◽  
...  

Drag reduction on airfoils using arrays of micro-actuators is one application of so-called Aero-MEMS. These microactuators interact with TS instabilities (Tollmien-Schlichting waves) inside a transitional boundary layer by superimposing artificially generated counterwaves in order to delay the transition process. These actuators need to exhibit a relatively large stroke at relatively high operational frequencies when operated at high Mach numbers. For this purpose, a novel micromachined mechanical amplification unit for increasing the stroke of piezoelectric microactuators up to high frequencies is proposed. The mechanical lever is provided by a sliced nickel titanium membrane. In this work, the actuator is explained in detail and wind tunnel experiments are carried out to investigate the effect of this mechanically amplified piezoelectric microactuator on thin transitional boundary layers. The experiments have been carried out in the transonic wind tunnel facility of the Berlin University of Technology on an unswept test wing with an NACA 0004 leading edge. The effectiveness of the actuator for flow control applications is determined in an open-loop setup consisting of one actuator having a relevant spanwise extension and a microstructured hot film sensor array located downstream. The aerodynamic results at Mach 0.33 are presented and discussed. It is shown that the actuator influences TS wave specific frequencies between 2.5 kHz and 7.4 kHz. The actuator amplitude is large enough to influence a transitional boundary layer significantly without bypassing the natural transition process which makes this type of micromachined actuator a candidate for high speed TS-control.


Sign in / Sign up

Export Citation Format

Share Document