Endwall Boundary Layer Development in an Engine Representative Four-Stage Low Pressure Turbine Rig

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Maria Vera ◽  
Elena de la Rosa Blanco ◽  
Howard Hodson ◽  
Raul Vazquez

Research by de la Rosa Blanco et al. (“Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between the Pressure Surface Separation and the Endwall Flows,” Proc. Inst. Mech. Eng., Part A, 217, pp. 433–441) in a linear cascade of low pressure turbine (LPT) blades has shown that the position and strength of the vortices forming the endwall flows depend on the state of the inlet endwall boundary layer, i.e., whether it is laminar or turbulent. This determines, amongst other effects, the location where the inlet boundary layer rolls up into a passage vortex, the amount of fluid that is entrained into the passage vortex, and the interaction of the vortex with the pressure side separation bubble. As a consequence, the mass-averaged stagnation pressure loss and therefore the design of a LPT depend on the state of the inlet endwall boundary layer. Unfortunately, the state of the boundary layer along the hub and casing under realistic engine conditions is not known. The results presented in this paper are taken from hot-film measurements performed on the casing of the fourth stage of the nozzle guide vanes of the cold flow affordable near term low emission (ANTLE) LPT rig. These results are compared with those from a low speed linear cascade of similar LPT blades. In the four-stage LPT rig, a transitional boundary layer has been found on the platforms upstream of the leading edge of the blades. The boundary layer is more turbulent near the leading edge of the blade and for higher Reynolds numbers. Within the passage, for both the cold flow four-stage rig and the low speed linear cascade, the new inlet boundary layer formed behind the pressure leg of the horseshoe vortex is a transitional boundary layer. The transition process progresses from the pressure to the suction surface of the passage in the direction of the secondary flow.

Author(s):  
Maria Vera ◽  
Elena de la Rosa Blanco ◽  
Howard Hodson ◽  
Raul Vazquez

In a linear cascade of low pressure turbine, LPT, blades, the position and strength of the vortices forming the endwall flows depends on the state of the inlet endwall boundary layer, i.e., whether it is laminar or turbulent. The latter will determine, amongst other effects, the location where the inlet boundary layer rolls up into a passage vortex, the amount of fluid that gets swept up by the passage vortex and the interaction with the pressure side separation bubble, de la Rosa Blanco et al. [1]. As a consequence, the mass-averaged stagnation pressure loss and therefore the design of a low-pressure turbine are influenced by the state of the inlet endwall boundary layer. The paragraph above highlights the importance of determining the state of the boundary layer along the endwalls if an understanding of the endwall flows in a LPT at realistic engine conditions is sought. The results presented in this paper are taken from hot film measurements performed on the endwalls of selected nozzle guide vanes from the fourth stage of the Affordable Near Term Low Emission, ANTLE, LPT rig. These results are compared with those from a low speed linear cascade of similar LPT blades. In the cold flow four-stage LPT rig, a transitional boundary layer has been found on the platforms upstream of the leading edge of the blades. The boundary layer is more turbulent nearer the leading edge of the blade and for higher Reynolds numbers. As for the passage, for both the cold flow four-stage rig and the low speed linear cascade, the new inlet boundary layer formed behind the pressure leg of the horseshoe vortex is a transitional boundary layer. The transition process progresses from the pressure to the suction surface of the passage in the direction of the secondary flow.


2019 ◽  
Vol 28 (5) ◽  
pp. 886-904
Author(s):  
Tao Cui ◽  
Songtao Wang ◽  
Xiaolei Tang ◽  
Fengbo Wen ◽  
Zhongqi Wang

Author(s):  
Ralf Mu¨ller ◽  
Konrad Vogeler ◽  
Helmut Sauer ◽  
Martin Hoeger

Recent investigations have shown a reduction of secondary losses in compressor cascades using a bulb like modification of the profile at the endwall. This paper is focussed on experimental work in comparison of 5 different endwall modifications at a compressor cascade. The cascade is modified near the endwall with a bulb, a medium and a large fillet. The fillet configurations are modified by an axial blunt cut-off at the leading edge. The investigations have been carried out at a profile developed from a hub section of the Dresden Low Speed Research Compressor (LSRC) blade, a compressor profile with a nominal turning of 18 deg. A datum configuration and the 5 other configurations were tested at the Low Speed Cascade Windtunnel (LSCW). For the bulb configuration, an intensified horse shoe vortex was suspected and observed counterrotating to the passage vortex with an influence on its propagation. The interaction of the passage vortex and the suction side profile boundary layer is influenced. The superposition of both is minimized and the losses developing from this effect are significant lower. For the fillet and blunt-fillet configurations, a fillet vortex develops and was observed co-rotating to the passage vortex with an influence on the mentioned interaction as well. Blunt leading edges produce additional losses but the superposition of the growing vortices may reduce the overall losses. The cases show a reduction in losses of 1.9% for 3 deg incidence and a range of 1.2% rise to 1.9% reduction in dependence of the incidence. This equals a reduction of the isolated secondary losses up to 28% with respect to the reference profile. Detailed results of the experiments are presented for the reference and all modified cascades.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jiahuan Cui ◽  
V. Nagabhushana Rao ◽  
Paul Tucker

Using a range of high-fidelity large eddy simulations (LES), the contrasting flow physics on the suction surface, pressure surface, and endwalls of a low-pressure turbine (LPT) blade (T106A) was studied. The current paper attempts to provide an improved understanding of the flow physics over these three zones under the influence of different inflow boundary conditions. These include: (a) the effect of wakes at low and high turbulence intensity on the flow at midspan and (b) the impact of the state of the incoming boundary layer on endwall flow features. On the suction surface, the pressure fluctuations on the aft portion significantly reduced at high freestream turbulence (FST). The instantaneous flow features revealed that this reduction at high FST (HF) is due to the dominance of “streak-based” transition over the “Kelvin–Helmholtz” (KH) based transition. Also, the transition mechanisms observed over the turbine blade were largely similar to those on a flat plate subjected to pressure gradients. On pressure surface, elongated vortices were observed at low FST (LF). The possibility of the coexistence of both the Görtler instability and the severe straining of the wakes in the formation of these elongated vortices was suggested. While this was true for the cases under low turbulence levels, the elongated vortices vanished at higher levels of background turbulence. At endwalls, the effect of the state of the incoming boundary layer on flow features has been demonstrated. The loss cores corresponding to the passage vortex and trailing shed vortex were moved farther from the endwall with a turbulent boundary layer (TBL) when compared to an incoming laminar boundary layer (LBL). Multiple horse-shoe vortices, which constantly moved toward the leading edge due to a low-frequency unstable mechanism, were captured.


Author(s):  
Xiao Qu ◽  
Yanfeng Zhang ◽  
Xingen Lu ◽  
Zhijun Lei ◽  
Junqiang Zhu

The endwall flow features are heavily dependent on the incoming boundary layer. It was particularly important to increase understanding the effect of inlet boundary layer thickness on endwall secondary flow under unsteady conditions. In present study, the influences of incoming wakes and various boundary layer thickness on endwall secondary flow were studied in a typical high-lift low-pressure turbine cascade, numerical calculation and experiment measurement of seven-hole probe were adopted at Re = 25,000 (based on the inlet velocity and the axial chord). Upstream wakes were simulated through moving rods upstream of the cascade. Detailed analysis was focused on the mechanisms of periodic wake influencing on the endwall vortex structures under thick endwall boundary layer condition. Influences of two different endwall boundary layer thickness on endwall secondary vortices structures were also comparatively analyzed. Under steady condition without wake, although thick incoming boundary layer reduces the cross-passage pressure gradient near endwall, more low momentum fluid inside thick endwall boundary layer is drawn into secondary vortices, finally resulting in stronger the pressure side leg of the leading edge horseshoe vortex and passage vortex, compared to the results of thin boundary layer condition. Under unsteady condition with thick inlet boundary layer, the “negative jet” effect of incoming wakes delays intersection of pressure side leg and suction side leg of leading edge horseshoe vortex on blade suction surface. The time-averaged strength of passage vortex and counter vortex core decreases by about 32%, and the underturning and overturning of endwall secondary flow is suppressed. The instantaneous results also indicate the endwall secondary vortices are reduced periodically at the position of wakes passing.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Henry C.-H. Ng ◽  
John D. Coull

During the testing of development engines and components, intrusive instrumentation such as Kiel-head pitot probes and shrouded thermocouples are used to evaluate gas properties and performance. The size of these instruments can be significant relative to the blades, and their impact on aerodynamic efficiency must be considered when analyzing the test data. This paper reports on such parasitic losses for instruments mounted on the leading edge of a stator in a low-pressure turbine, with particular emphasis on understanding the impact of probe geometry on the induced loss. The instrumentation and turbine blades have been modeled in a low Mach number cascade facility with an upstream turbulence grid. The cascade was designed so that the leading edge probes were interchangeable in situ, allowing for rapid testing of differing probe geometries. Reynolds-averaged Navier–Stokes (RANS) calculations were performed to complement the experiments and improve understanding of the flow behavior. A horseshoe vortex-like system forms at the join of the probe body and blade leading edge, generating pairs of streamwise vortices which convect over the blade pressure and suction surfaces. These vortices promote mixing between the freestream and boundary layer fluid and promote the transition of the boundary layer from laminar to turbulent flow. The size and shape of the leading edge probes relative to the blade vary significantly between applications. Tests with realistic probe geometries demonstrate that the detailed design of the shroud bleed system can impact the loss. A study of idealized cylinders is performed to isolate the impact of probe diameter, aspect ratio, and incidence. Beyond a probe aspect ratio of two, parasitic loss was found to scale approximately with probe frontal area.


Author(s):  
E. Rosa de la Blanco ◽  
H. P. Hodson ◽  
R Vazquez ◽  
D Torre

This paper describes the effect of the state of the inlet boundary layer (laminar or turbulent) on the structure of the endwall flow on two different profiles of low-pressure (LP) turbine blades (solid thin and hollow thick). At present the state of the endwall boundary layer at the inlet of a real LP turbine is not known. The intention of this paper is to show that, for different designs of LP turbine, the state of the inlet boundary layer affects the performance of the blade in very different ways. The testing was completed at low speed in a linear cascade using area traversing, flow visualization and static pressure measurements. The paper shows that, for a laminar inlet boundary layer the two profiles have a similar loss distribution and structure of endwall flow. However, for a turbulent inlet boundary layer the two profiles are shown to differ significantly in both the total loss and endwall flow structure. The pressure side separation bubble on the solid thin profile is shown to interact with the passage vortex, causing a higher endwall loss than that measured on the hollow thick profile.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Stephan Stotz ◽  
Franz Blaim ◽  
Reinhard Niehuis

Transition of the state of the boundary layer from laminar to turbulent plays an important role in the aerodynamic loss generation on turbine airfoils. An accurate simulation of the transition process and of the state of the boundary layer is therefore crucial for prediction of the aerodynamic efficiency of components in rotating machines. A lot of the research in the past years dealt with the transition over laminar separation bubbles, especially concerning flows in low pressure turbines (LPTs) of air jet engines. Nevertheless, bypass transition is also frequent in turbomachines at higher Reynolds numbers as well as for properly designed profiles. Compared with transition over a laminar separation bubble, a bypass transition is experimentally much more difficult to detect with standard measurement techniques. In such cases it becomes necessary to use more sophisticated techniques, such as hot-film anemometry, hot wires, or Preston probes in order to obtain accurate information on the state of the boundary layer. The study presented is carried out using a linear cascade with a LPT blade profile with strong front loading and gentle flow deceleration at the rear suction side of the blade. Measurements were performed at the high-speed cascade wind tunnel of the Institute of Jet Propulsion at engine relevant Mach and Reynolds numbers. Emphasis is put on the evaluation of the different transition processes at midspan and its influence on profile losses. The data postprocessing was adapted for compressible flows, which allows a more accurate determination of the transition area as well as qualitatively better distributions of the wall shear stress. Finally, comparisons with simulations, using computational fluid dynamics (CFD) tools, are performed and fields for improvement of the turbulence and transition models are identified.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Shriram Jagannathan ◽  
Markus Schwänen ◽  
Andrew Duggleby

The separation and reattachment of suction surface boundary layer in a low pressure turbine is characterized using large-eddy simulation at Ress = 69000 based on inlet velocity and suction surface length. Favorable comparisons are drawn with experiments using a high pass filtered Smagorinsky model for sub-grid scales. The onset of time mean separation is at s/so = 0.61 and reattachment at s/so = 0.81, extending over 20% of the suction surface. The boundary layer is convectively unstable with a maximum reverse flow velocity of about 13% of freestream. The breakdown to turbulence occurs over a very short distance of suction surface and is followed by reattachment. Turbulence near the bubble is further characterized using anisotropy invariant mapping and time orthogonal decomposition diagnostics. Particularly the vortex shedding and shear layer flapping phenomena are addressed. On the suction side, dominant hairpin structures near the transitional and turbulent flow regime are observed. The hairpin vortices are carried by the freestream even downstream of the trailing edge of the blade with a possibility of reaching the next stage. Longitudinal streaks that evolve from the breakdown of hairpin vortices formed near the leading edge are observed on the pressure surface.


Author(s):  
Can Ma ◽  
Xin Yuan

This paper numerically investigates the transitional flow on a LPT (low pressure turbine) blade with fluctuating downstream potential field. A linear T106 cascade is subjected to an oscillating potential field generated by downstream moving bars. Previous experimental results in open literature showed that the unsteady downstream potential field has an obvious influence on the transitional boundary layer of LPT blade. For the numerical simulations in this paper, the unsteady Reynolds-Averaged Navier-Stokes equations are solved using the commercial software FLUENT. The transition model used in this paper is the γ-Reθ model, which has been validated against a number of transitional flows previously, including the influence of upstream wakes on the transitional boundary layer of T106 turbine blade. The simulation results are first compared to the experimental results in open literature to validate the numerical methods. Two different FSTI (free stream turbulence intensity), 1.6% and 4.0% are investigated with axial spacing between the blade and the downstream bar varying from 50% axial chord to 25% axial chord. To investigate the influence of flow compressibility, two different inlet Mach numbers, 0.02 and 0.2 are simulated. Results show that decreasing the axial spacing has an influence on the unsteady boundary layer separation and transition and the influence is enhanced at elevated inlet Mach number.


Sign in / Sign up

Export Citation Format

Share Document