scholarly journals Forbidden Induced Subgraphs and the Price of Connectivity for Feedback Vertex Set

Author(s):  
Rémy Belmonte ◽  
Pim van ’t Hof ◽  
Marcin Kamiński ◽  
Daniël Paulusma
2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Raquel Bravo ◽  
Sulamita Klein ◽  
Loana Tito Nogueira ◽  
Fábio Protti

Graph Theory International audience A graph is extended P4-laden if each of its induced subgraphs with at most six vertices that contains more than two induced P4's is 2K2,C4-free. A cycle transversal (or feedback vertex set) of a graph G is a subset T ⊆ V (G) such that T ∩ V (C) 6= ∅ for every cycle C of G; if, in addition, T is a clique, then T is a clique cycle transversal (cct). Finding a cct in a graph G is equivalent to partitioning V (G) into subsets C and F such that C induces a complete subgraph and F an acyclic subgraph. This work considers the problem of characterizing extended P4-laden graphs admitting a cct. We characterize such graphs by means of a finite family of forbidden induced subgraphs, and present a linear-time algorithm to recognize them.


10.37236/644 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Vadim V. Lozin ◽  
Colin Mayhill ◽  
Victor Zamaraev

For a graph property $X$, let $X_n$ be the number of graphs with vertex set $\{1,\ldots,n\}$ having property $X$, also known as the speed of $X$. A property $X$ is called factorial if $X$ is hereditary (i.e. closed under taking induced subgraphs) and $n^{c_1n}\le X_n\le n^{c_2n}$ for some positive constants $c_1$ and $c_2$. Hereditary properties with the speed slower than factorial are surprisingly well structured. The situation with factorial properties is more complicated and less explored, although this family includes many properties of theoretical or practical importance, such as planar graphs or graphs of bounded vertex degree. To simplify the study of factorial properties, we propose the following conjecture: the speed of a hereditary property $X$ is factorial if and only if the fastest of the following three properties is factorial: bipartite graphs in $X$, co-bipartite graphs in $X$ and split graphs in $X$. In this note, we verify the conjecture for hereditary properties defined by forbidden induced subgraphs with at most 4 vertices.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Van Bang Le ◽  
H. N. Ridder

Graphs and Algorithms International audience An undirected graph G=(V,E) is a probe split graph if its vertex set can be partitioned into two sets, N (non-probes) and P (probes) where N is independent and there exists E' ⊆ N× N such that G'=(V,E∪ E') is a split graph. Recently Chang et al. gave an O(V4(V+E)) time recognition algorithm for probe split graphs. In this article we give O(V2+VE) time recognition algorithms and characterisations by forbidden induced subgraphs both for the case when the partition into probes and non-probes is given, and when it is not given.


2021 ◽  
Vol 867 ◽  
pp. 1-12
Author(s):  
Lawqueen Kanesh ◽  
Soumen Maity ◽  
Komal Muluk ◽  
Saket Saurabh

Algorithmica ◽  
2021 ◽  
Author(s):  
Robert Ganian ◽  
Sebastian Ordyniak ◽  
M. S. Ramanujan

AbstractIn this paper we revisit the classical edge disjoint paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our focus lies on structural parameterizations for the problem that allow for efficient (polynomial-time or FPT) algorithms. As our first result, we answer an open question stated in Fleszar et al. (Proceedings of the ESA, 2016), by showing that the problem can be solved in polynomial time if the input graph has a feedback vertex set of size one. We also show that EDP parameterized by the treewidth and the maximum degree of the input graph is fixed-parameter tractable. Having developed two novel algorithms for EDP using structural restrictions on the input graph, we then turn our attention towards the augmented graph, i.e., the graph obtained from the input graph after adding one edge between every terminal pair. In constrast to the input graph, where EDP is known to remain -hard even for treewidth two, a result by Zhou et al. (Algorithmica 26(1):3--30, 2000) shows that EDP can be solved in non-uniform polynomial time if the augmented graph has constant treewidth; we note that the possible improvement of this result to an FPT-algorithm has remained open since then. We show that this is highly unlikely by establishing the [1]-hardness of the problem parameterized by the treewidth (and even feedback vertex set) of the augmented graph. Finally, we develop an FPT-algorithm for EDP by exploiting a novel structural parameter of the augmented graph.


Author(s):  
Binh-Minh Bui-Xuan ◽  
Jan Arne Telle ◽  
Martin Vatshelle

2019 ◽  
Vol 15 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Akanksha Agrawal ◽  
Daniel Lokshtanov ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
Meirav Zehavi

Sign in / Sign up

Export Citation Format

Share Document