Train Rolling Bearing Degradation Condition Assessment Based on Local Mean Decomposition and Support Vector Data Description

Author(s):  
Dandan Wang ◽  
Yong Qin ◽  
Xiaoqing Cheng ◽  
Zhilong Zhang ◽  
Hengkui Li ◽  
...  
2019 ◽  
Vol 9 (8) ◽  
pp. 1676 ◽  
Author(s):  
Tan ◽  
Fu ◽  
Wang ◽  
Xue ◽  
Hu ◽  
...  

Rolling bearing is of great importance in modern industrial products, the failure of which may result in accidents and economic losses. Therefore, fault diagnosis of rolling bearing is significant and necessary and can enhance the reliability and efficiency of mechanical systems. Therefore, a novel fault diagnosis method for rolling bearing based on semi-supervised clustering and support vector data description (SVDD) with adaptive parameter optimization and improved decision strategy is proposed in this study. First, variational mode decomposition (VMD) was applied to decompose the vibration signals into sets of intrinsic mode functions (IMFs), where the decomposing mode number K was determined by the central frequency observation method. Next, fuzzy entropy (FuzzyEn) values of all IMFs were calculated to construct the feature vectors of different types of faults. Later, training samples were clustered with semi-supervised fuzzy C-means clustering (SSFCM) for fully exploiting the information inside samples, whereupon a small number of labeled samples were able to provide sufficient data distribution information for subsequent SVDD algorithms and improve its recognition ability. Afterwards, SVDD with improved decision strategy (ID-SVDD) that combined with k-nearest neighbor was proposed to establish diagnostic model. Simultaneously, the optimal parameters C and σ for ID-SVDD were searched by the newly proposed sine cosine algorithm improved with adaptive updating strategy (ASCA). Finally, the proposed diagnosis method was applied for engineering application as well as contrastive analysis. The obtained results reveal that the proposed method exhibits the best performance in all evaluation metrics and has advantages over other comparison methods in both precision and stability.


2020 ◽  
Vol 15 ◽  
Author(s):  
Yi Zou ◽  
Hongjie Wu ◽  
Xiaoyi Guo ◽  
Li Peng ◽  
Yijie Ding ◽  
...  

Background: Detecting DNA-binding proetins (DBPs) based on biological and chemical methods is time consuming and expensive. Objective: In recent years, the rise of computational biology methods based on Machine Learning (ML) has greatly improved the detection efficiency of DBPs. Method: In this study, Multiple Kernel-based Fuzzy SVM Model with Support Vector Data Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted from protein sequence. Secondly, multiple kernels are constructed via these sequence feature. Than, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs. Results: Our model is test on several benchmark datasets. Compared with other methods, MK-FSVM-SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and PDB2272 (0.5476). Conclusion: We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the classifier for DNA-binding proteins identification.


2021 ◽  
Author(s):  
JianXi Yang ◽  
Fei Yang ◽  
Likai Zhang ◽  
Ren Li ◽  
Shixin Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document