Wave Propagation in Functionally Graded Material Bar Due to Collision

Author(s):  
Tadaharu Adachi ◽  
Masahiro Higuchi
2014 ◽  
Vol 543-547 ◽  
pp. 7-11
Author(s):  
X.D. Yang ◽  
J.G. Yu

In this article, circumferential SH wave propagation in functionally graded material (FGM) hollow cylinders is investigated. Based on the Kelvin-Voigt viscoelastic theory, the controlling differential equations in terms of displacements are deduced. By the Legendre polynomial method, the asymptotic solutions are obtained. Through the numerical results, the influences of gradient profile and the influences of the radius to thickness ratio on dispersion and attenuation are illustrated. The work is crucial for guided ultrasonic nondestructive evaluation for graded hollow cylinders.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Abdul Ghafar Shah ◽  
Aalia Ali ◽  
Muhmmad Nawaz Naeem ◽  
Shahid Hussain Arshad

Vibrations of a cylindrical shell composed of three layers of different materials resting on elastic foundations are studied out. This configuration is formed by three layers of material in thickness direction where the inner and outer layers are of isotropic materials and the middle is of functionally graded material. Love shell dynamical equations are considered to describe the vibration problem. The expressions for moduli of the Winkler and Pasternak foundations are combined with the shell dynamical equations. The wave propagation approach is used to solve the present shell problem. A number of comparisons of numerical results are performed to check the validity and accuracy of the present approach.


2016 ◽  
Vol 3 (4) ◽  
pp. 202-205
Author(s):  
Boukhari Ahmed ◽  
Boukhelf Fouad ◽  
Benbakhti Abdel Djalil ◽  
Bachir Bouiadjra Mohamed ◽  
Tounsi Abdelouahed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document