Glacial-isostatic Adjustment and the Viscosity Structure Underlying the Vatnajökull Ice Cap, Iceland

Author(s):  
Kevin Fleming ◽  
Zdeněk Martinec ◽  
Detlef Wolf
2020 ◽  
Author(s):  
Maaike Weerdesteijn ◽  
Clinton Conrad ◽  
John Naliboff ◽  
Kate Selway

<p>Models of Glacial Isostatic Adjustment (GIA) processes are useful because they help us understand landscape evolution in past and current glaciated regions. Such models are sensitive to ice and ocean loading as well as to Earth material properties, such as viscosity. Many current GIA models assume radially-symmetric (layered) viscosity structures, but viscosity may vary laterally and these variations can have large effects on GIA modeling outputs. Here we present the potential of using ASPECT, an open-source finite element mantle-convection code that can handle lateral viscosity variations, for GIA modeling applications. ASPECT has the advantage of adaptive mesh refinement, making it computationally efficient, especially for problems such as GIA with large variations in strain rates. Furthermore, ASPECT is open-source, as will be the GIA extension, making it a valuable future tool for the GIA community.</p><p> </p><p>Our GIA extension is benchmarked using a similar case as in Martinec et al. (GJI, 2018), such that the performance of our GIA code can be compared to other GIA codes. In this case, a spherically symmetric, five-layer, incompressible, self-gravitating viscoelastic Earth model is used (Spada et al, GJI 2011). The surface load consists of a spherical ice cap centered at the North pole, and is applied as a Heaviside loading. The ice load remains constant with time, and thus we have not yet implemented the full sea level equation (SLE). Beyond this benchmark, we have incorporated lateral viscosity variations underneath the ice cap, to demonstrate the ability of efficiently implementing laterally-varying material properties in ASPECT.</p><p> </p><p>We show the possibilities, capabilities, and potential of ASPECT for GIA modeling. In the near future we will further develop the code with the sea level equation and an ocean basin, and will explore ASPECT’s current capability of using time-varying distributed surface loads. These functions will allow for modeling of GIA for realistic ice load scenarios imposed above potentially complex earth structures.</p>


2007 ◽  
Vol 164 (4) ◽  
pp. 751-768 ◽  
Author(s):  
Kevin Fleming ◽  
Zdeněk Martinec ◽  
Detlef Wolf

1992 ◽  
Vol 29 (11) ◽  
pp. 2418-2425 ◽  
Author(s):  
A. Mark Tushingham

Churchill, Manitoba, is located near the centre of postglacial uplift caused by the Earth's recovery from the melting of the Laurentide Ice Sheet. The value of present-day uplift at Churchill has important implications in the study of postglacial uplift in that it can aid in constraining the thickness of the ice sheet and the rheology of the Earth. The tide-gauge record at Churchill since 1940 is examined, along with nearby Holocene relative sea-level data, geodetic measurements, and recent absolute gravimetry measurements, and a present-day rate of uplift of 8–9 mm/a is estimated. Glacial isostatic adjustment models yield similar estimates for the rate of uplift at Churchill. The effects of the tide-gauge record of the diversion of the Churchill River during the mid-1970's are discussed.


2020 ◽  
Author(s):  
Tanghua Li ◽  
Nicole Khan ◽  
Alisa Baranskaya ◽  
Timothy Shaw ◽  
W Richard Peltier ◽  
...  

2013 ◽  
Vol 5 (2) ◽  
pp. 2345-2388 ◽  
Author(s):  
P. Schmidt ◽  
B. Lund ◽  
J-O. Näslund

Abstract. In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.


Sign in / Sign up

Export Citation Format

Share Document