Stability and Optimal Harvesting in a Stage Structure Predator-Prey Switching Strategy

Author(s):  
Qamar J. A. Khan ◽  
Lakdere Benkherouf ◽  
Nejib Smaoui
2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


2010 ◽  
Vol 2010 ◽  
pp. 1-12
Author(s):  
Xiangzeng Kong ◽  
Zhiqin Chen ◽  
Li Xu ◽  
Wensheng Yang

We propose and study the permanence of the following periodic Holling III predator-prey system with stage structure for prey and both two predators which consume immature prey. Sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Can-Yun Huang ◽  
Min Zhao ◽  
Hai-Feng Huo

A stage-structured three-species predator-prey model with Beddington-DeAngelis and Holling II functional response is introduced. Based on the comparison theorem, sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained. An example is also presented to illustrate our main results.


2015 ◽  
Vol 25 (01) ◽  
pp. 1550012 ◽  
Author(s):  
P. Tchinda Mouofo ◽  
R. Djidjou Demasse ◽  
J. J. Tewa ◽  
M. A. Aziz-Alaoui

A delay predator–prey model is formulated with continuous threshold prey harvesting and Holling response function of type III. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. The positive invariance of the non-negative orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is investigated and the existence of some local bifurcations is established: saddle-node bifurcation, Hopf bifurcation. We use optimal control theory to provide the correct approach to natural resource management. Results are also obtained for optimal harvesting. Numerical simulations are given to illustrate the results.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Yakui Xue ◽  
Xiafeng Duan

We invest a predator-prey model of Holling type-IV functional response with stage structure and double delays due to maturation time for both prey and predator. The dynamical behavior of the system is investigated from the point of view of stability switches aspects. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the mature prey. Based on some comparison arguments, sharp threshold conditions which are both necessary and sufficient for the global stability of the equilibrium point of predator extinction are obtained. The most important outcome of this paper is that the variation of predator stage structure can affect the existence of the interior equilibrium point and drive the predator into extinction by changing the maturation (through-stage) time delay. Our linear stability work and numerical results show that if the resource is dynamic, as in nature, there is a window in maturation time delay parameters that generate sustainable oscillatory dynamics.


Sign in / Sign up

Export Citation Format

Share Document