On a Local Principle and Algebras Generated by Toeplitz Matrices

Author(s):  
Israel Gohberg ◽  
Nahum Krupnik
Author(s):  
Bahram Mashhoon

A postulate of locality permeates through the special and general theories of relativity. First, Lorentz invariance is extended in a pointwise manner to actual, namely, accelerated observers in Minkowski spacetime. This hypothesis of locality is then employed crucially in Einstein’s local principle of equivalence to render observers pointwise inertial in a gravitational field. Field measurements are intrinsically nonlocal, however. To go beyond the locality postulate in Minkowski spacetime, the past history of the accelerated observer must be taken into account in accordance with the Bohr-Rosenfeld principle. The observer in general carries the memory of its past acceleration. The deep connection between inertia and gravitation suggests that gravity could be nonlocal as well and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein’s theory of gravitation has recently been developed. In this nonlocal gravity (NLG) theory, the gravitational field is local, but satisfies a partial integro-differential field equation. A significant observational consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. The implications of NLG are explored in this book for gravitational lensing, gravitational radiation, the gravitational physics of the Solar System and the internal dynamics of nearby galaxies as well as clusters of galaxies. This approach is extended to nonlocal Newtonian cosmology, where the attraction of gravity fades with the expansion of the universe. Thus far only some of the consequences of NLG have been compared with observation.


Author(s):  
Yunlan Wei ◽  
Yanpeng Zheng ◽  
Zhaolin Jiang ◽  
Sugoog Shon
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 230-245
Author(s):  
Macarena Collao ◽  
Mario Salas ◽  
Ricardo L. Soto

Abstract The nonnegative inverse eigenvalue problem (NIEP) is the problem of finding conditions for the existence of an n × n entrywise nonnegative matrix A with prescribed spectrum Λ = {λ1, . . ., λn}. If the problem has a solution, we say that Λ is realizable and that A is a realizing matrix. In this paper we consider the NIEP for a Toeplitz realizing matrix A, and as far as we know, this is the first work which addresses the Toeplitz nonnegative realization of spectra. We show that nonnegative companion matrices are similar to nonnegative Toeplitz ones. We note that, as a consequence, a realizable list Λ= {λ1, . . ., λn} of complex numbers in the left-half plane, that is, with Re λi≤ 0, i = 2, . . ., n, is in particular realizable by a Toeplitz matrix. Moreover, we show how to construct symmetric nonnegative block Toeplitz matrices with prescribed spectrum and we explore the universal realizability of lists, which are realizable by this kind of matrices. We also propose a Matlab Toeplitz routine to compute a Toeplitz solution matrix.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 870
Author(s):  
Diego Caratelli ◽  
Paolo Emilio Ricci

We show that using Dunford-Taylor’s integral, a classical tool of functional analysis, it is possible to derive an expression for the inverse of a general non-singular complex-valued tridiagonal matrix. The special cases of Jacobi’s symmetric and Toeplitz (in particular symmetric Toeplitz) matrices are included. The proposed method does not require the knowledge of the matrix eigenvalues and relies only on the relevant invariants which are determined, in a computationally effective way, by means of a dedicated recursive procedure. The considered technique has been validated through several test cases with the aid of the computer algebra program Mathematica©.


Author(s):  
Sven-Erik Ekström ◽  
Paris Vassalos

AbstractIt is known that the generating function f of a sequence of Toeplitz matrices {Tn(f)}n may not describe the asymptotic distribution of the eigenvalues of Tn(f) if f is not real. In this paper, we assume as a working hypothesis that, if the eigenvalues of Tn(f) are real for all n, then they admit an asymptotic expansion of the same type as considered in previous works, where the first function, called the eigenvalue symbol $\mathfrak {f}$ f , appearing in this expansion is real and describes the asymptotic distribution of the eigenvalues of Tn(f). This eigenvalue symbol $\mathfrak {f}$ f is in general not known in closed form. After validating this working hypothesis through a number of numerical experiments, we propose a matrix-less algorithm in order to approximate the eigenvalue distribution function $\mathfrak {f}$ f . The proposed algorithm, which opposed to previous versions, does not need any information about neither f nor $\mathfrak {f}$ f is tested on a wide range of numerical examples; in some cases, we are even able to find the analytical expression of $\mathfrak {f}$ f . Future research directions are outlined at the end of the paper.


2002 ◽  
Vol 41 (5) ◽  
pp. 1413-1439 ◽  
Author(s):  
A. Bultheel ◽  
P. Carrette

1992 ◽  
Vol 173 ◽  
pp. 19-38 ◽  
Author(s):  
Robert L. Ellis ◽  
David C. Lay

Sign in / Sign up

Export Citation Format

Share Document