Climate Change and Glacial Lake Outburst Floods in Himachal Himalaya, India

Author(s):  
R. B. Singh ◽  
Pankaj Kumar
2021 ◽  
Author(s):  
Joanne Wood ◽  
Stephan Harrison ◽  
Ryan Wilson ◽  
Neil Glasser ◽  
John Reynolds ◽  
...  

<p>Climate change is resulting in mass loss and the retreat of glaciers in the Andes, exposing steep valley sides, over-deepened valley bottoms, and creating glacial lakes behind moraine dams. Glacial Lake Outburst Floods (GLOFs) present the biggest risk posed by glacier recession in Peru. Understanding the characteristics of lakes that have failed in the past will provide an aid to identifying those lakes that might fail in the future and narrow down which lakes are of greatest interest for reducing the risks to local vulnerable populations. </p><p>Using a newly created lake inventory for the Peruvian Andes (Wood et al., in review) and a comprehensive GLOF inventory (unpublished) we investigate lakes from which GLOFs have occurred in the past. This is to establish which physical components of the glacial lake systems are common to those lakes that have failed previously and which can be identified remotely, easily and objectively, in order to improve existing methods of hazard assessment.</p>


2017 ◽  
Author(s):  
Stephan Harrison ◽  
Jeffrey S. Kargel ◽  
Christian Huggel ◽  
John Reynolds ◽  
Dan H. Shugar ◽  
...  

Abstract. Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste and many have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the collapse of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and their regularity – rather unexpectedly – has declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.


2021 ◽  
Author(s):  
Deepak Kc ◽  
Top Khatri ◽  
Rishiram Sharma

<p>Nepal, a mountainous country, is experiencing multiple disasters, majority of which are induced by Climate Change. Erratic rainfall, extremely high temperature during summer, cold waves are some of them. Nepal will experience the impacts of climate change through an increase in temperature, more frequent heat waves and shorter frost durations in the future (5AR IPCC). Nepal is witnessing the increased maximum temperature of 0.56<sup>o</sup>C per decade and the increment of the temperature is even higher in the mountain region (ICIMOD 2019). One of the major impacts of Climate Change among others, is glacier retreat and Glacial Lake Outburst Floods (GLOFS). Nepal has already experienced more than 26 GLOFS (UNDP and ICIMOD 2020), originated both from Nepal and China, Tibet.</p><p>The Imja Glacial Lake is located at 27° 53′ 55“ N latitude, 86° 55’ 20” E longitude and at an altitude of 5010 m in Everest Region of Nepal Himalayas.  Imja was identified during 1960s as a small supra lake, was later expanded to an area of <strong>1.28 Km<sup>2</sup></strong>, <strong>148.9 meter deep</strong>, holding <strong>75.2 million cubic meters </strong>of water in 2014.   Lake lowering by 3.4 metres and establishment of early warning system was done in 2016 by the Government of Nepal and UNDP with the support of Global Environment Facility.  Hydro-met stations & GLOF Sensors in the periphery and downstream  of Imja Lake and automated early warning sirens in six prime settlements in the  downstream of Imja  watershed  linking with  dynamic SMS Alert system along 50 km downstream of Imja Dudh Koshi River have been have been linked with community-based DRM institutions at local government level. This initiative is important for preparedness and response of GLOF Risk Reduction in the Imja Valley, benefitting 71,752 vulnerable people, both local and the tourists visiting the Everest Region of Nepal.</p><p>Early Warning System of Tsho Rolpa Glacial Lake, the biggest Glacial Lake of Nepal is another example in the such system. New inventory of Glacial Lakes has identified 47 critical lakes as priority lakes for GLOF Risk Reduction in Koshi, Gandaki and Karnali basins. In the new context of federal  governance system, the role of federal, province and local government and communities is crucial  for achieving the targets of  Sendai Framework for Disaster Risk Reduction , particularly target “g” and SDGs 11 and 13  through integrating  the targets in the regular planning and   its’ implementation for resilient and Sustainable Development of  Nepal.</p><p><strong>References:</strong></p><p>Glacial lakes and glacial lake outburst floods in Nepal. Kathmandu, ICIMOD 2011,  Nepal Disaster Report, Ministry of Home affairs (MoHA) , 2015, 2018 Annual Reports UNDP 2016, 2017 and 2018,  Imja Hydro-Meteorological and Early Warning System User Manual, Government of Nepal and UNDP, 2017 Project Completion Report: Community Based Flood and Glacial Lake Outburst Risk Reduction Project, Government of Nepal and UNDP, 2017,  Inventory of glacial lakes and identification of potentially dangerous glacial lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet Autonomous Region of China, and India. Research Report, ICIMOD and UNDP, 2020</p><p> </p>


Author(s):  
Somana Riaz ◽  
Arshad Ali ◽  
Muhammad N. Baig

The greater Himalayan Mountains host the largest snow covered area outside the polar regions and serves as the source for some of the major fluvial systems of the world. The region acts as the lifeline for approximately 10% of the world’s population. The terrain is geologically active, highly susceptible to climate change processes and plays a significant role in global hydro-meteorological cycles and biodiversity. With the increasing impacts of climate change to the glaciers and ice caps during the past few decades, people living in the Himalayas have become vulnerable to a higher risk of floods, avalanches and glacial lake outburst floods(GLOFs). This study reviewed the work carried out by earlier researchers to understand the history and science of GLOFs and their potential risk to the communities in the Himalayanbelt, particularly in Pakistan.


2017 ◽  
Author(s):  
Stephan Harrison ◽  
Jeffrey S. Kargel ◽  
Christian Huggel ◽  
John Reynolds ◽  
Dan H. Shugar ◽  
...  

Author(s):  
David J. A. Evans

A knowledge of glaciation is important because it provides us with an understanding of glaciers as Earth surface systems face climate change and of the glacial materials beneath the surface. Crucial are glacier-related hazards impacting directly on human society and glacial landforms and sediments lying at the surface of some of the most densely populated parts of our planet. ‘Glaciers, humans, and enduring ice’ considers glacial hazards, such as glacial lake outburst floods, and important engineering considerations, including sediment failure and seepage. It discusses the valuable legacy of past glaciations and asks if Earth is entering a new phase of ice-free conditions, the like of which it has not endured for more than 35 million years.


2018 ◽  
Vol 12 (4) ◽  
pp. 1195-1209 ◽  
Author(s):  
Stephan Harrison ◽  
Jeffrey S. Kargel ◽  
Christian Huggel ◽  
John Reynolds ◽  
Dan H. Shugar ◽  
...  

Abstract. Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


Sign in / Sign up

Export Citation Format

Share Document