Detection of Video Objects in Dynamic Scene Using Local Binary Pattern Subtraction Method

Author(s):  
Prashant Kumar ◽  
Deepak K. Rout ◽  
Abhishek Kumar ◽  
Mohit Verma ◽  
Deepak Kumar
2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


2014 ◽  
Vol 8 (3) ◽  
pp. 31-34
Author(s):  
O. Rama Devi ◽  
◽  
L. S. S. Reddy ◽  
E. V. Prasad ◽  
◽  
...  

2021 ◽  
Vol 24 ◽  
pp. 101038
Author(s):  
Changqing Su ◽  
Keke Liu ◽  
Jun Guo ◽  
Weiwu Ma ◽  
Hailong Li ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2328
Author(s):  
Yameng Hong ◽  
Chengcai Leng ◽  
Xinyue Zhang ◽  
Zhao Pei ◽  
Irene Cheng ◽  
...  

Image registration has always been an important research topic. This paper proposes a novel method of constructing descriptors called the histogram of oriented local binary pattern descriptor (HOLBP) for fast and robust matching. There are three new components in our algorithm. First, we redefined the gradient and angle calculation template to make it more sensitive to edge information. Second, we proposed a new construction method of the HOLBP descriptor and improved the traditional local binary pattern (LBP) computation template. Third, the principle of uniform rotation-invariant LBP was applied to add 10-dimensional gradient direction information to form a 138-dimension HOLBP descriptor vector. The experimental results showed that our method is very stable in terms of accuracy and computational time for different test images.


2021 ◽  
Vol 11 (5) ◽  
pp. 2174
Author(s):  
Xiaoguang Li ◽  
Feifan Yang ◽  
Jianglu Huang ◽  
Li Zhuo

Images captured in a real scene usually suffer from complex non-uniform degradation, which includes both global and local blurs. It is difficult to handle the complex blur variances by a unified processing model. We propose a global-local blur disentangling network, which can effectively extract global and local blur features via two branches. A phased training scheme is designed to disentangle the global and local blur features, that is the branches are trained with task-specific datasets, respectively. A branch attention mechanism is introduced to dynamically fuse global and local features. Complex blurry images are used to train the attention module and the reconstruction module. The visualized feature maps of different branches indicated that our dual-branch network can decouple the global and local blur features efficiently. Experimental results show that the proposed dual-branch blur disentangling network can improve both the subjective and objective deblurring effects for real captured images.


Sign in / Sign up

Export Citation Format

Share Document