Modelling of Neural Metabolism Using 13C-NMR Spectroscopy and Metabolic Flux Analysis

2010 ◽  
pp. 101-106
Author(s):  
Ana P. Teixeira ◽  
Sónia Sá Santos ◽  
Ana I. Amaral ◽  
Nuno Carinhas ◽  
Rui Oliveira ◽  
...  
2010 ◽  
Vol 113 (3) ◽  
pp. 735-748 ◽  
Author(s):  
Ana I. Amaral ◽  
Ana P. Teixeira ◽  
Sanja Martens ◽  
Vicente Bernal ◽  
Marcos F. Q. Sousa ◽  
...  

2010 ◽  
Vol 12 (2) ◽  
pp. 138-149 ◽  
Author(s):  
Chetan Goudar ◽  
Richard Biener ◽  
C. Boisart ◽  
Rüdiger Heidemann ◽  
James Piret ◽  
...  

2000 ◽  
Vol 77 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Albert A de Graaf ◽  
Matthias Mahle ◽  
Michael Möllney ◽  
Wolfgang Wiechert ◽  
Peter Stahmann ◽  
...  

2008 ◽  
Vol 52 (3) ◽  
pp. 478-486 ◽  
Author(s):  
Ana P. Teixeira ◽  
Sónia Sá Santos ◽  
Nuno Carinhas ◽  
Rui Oliveira ◽  
Paula M. Alves

Molbank ◽  
10.3390/m1140 ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. M1140
Author(s):  
Jack Bennett ◽  
Paul Murphy

(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol was isolated in 18% after treating the glucose derived (5R,6S,7R)-5,6,7-tris[(triethylsilyl)oxy]nona-1,8-dien-4-one with (1S)-(+)-10-camphorsulfonic acid (CSA). The one-pot formation of the title compound involved triethylsilyl (TES) removal, alkene isomerization, intramolecular conjugate addition and ketal formation. The compound was characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry and IR spectroscopy. NMR spectroscopy was used to establish the product structure, including the conformation of its tetrahydropyran ring.


Sign in / Sign up

Export Citation Format

Share Document