Direct and Large Eddy Numerical Simulations of Turbulent Viscoelastic Drag Reduction

Author(s):  
Laurent Thais ◽  
Andres E. Tejada-Martínez ◽  
Thomas B. Gatski ◽  
Gilmar Mompean ◽  
Hassan Naji
Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


2020 ◽  
Vol 198 ◽  
pp. 104398 ◽  
Author(s):  
Yunchao Yang ◽  
William Bradford Bartow ◽  
Gecheng Zha ◽  
Heyong Xu ◽  
Jianlei Wang

Author(s):  
B. Franzelli ◽  
E. Riber ◽  
B. Cuenot ◽  
M. Ihme

Numerical simulations are regarded as an essential tool for improving the design of combustion systems since they can provide information that is complementary to experiments. However, although numerical simulations have already been successfully applied to the prediction of temperature and species concentration in turbulent flames, the production of soot is far from being conclusive due to the complexity of the processes involved in soot production. In this context, first Large Eddy Simulations (LES) of soot production in turbulent flames are reported in the literature in laboratory-scale configurations, thereby confirming the feasibility of the approach. However numerous modeling and numerical issues have not been completely solved. Moreover, validation of the models through comparisons with measurements in realistic complex flows typical of aero-engines is still rare. This work therefore proposes to evaluate the LES approach for the prediction of soot production in an experimental swirl-stabilized non-premixed ethylene/air aero-engine combustor, for which soot and flame data are available. Two simulations are carried out using a two-equation soot model to compare the performance of a hybrid chemical description (reduced chemistry for the flame structure/tabulated chemistry for soot precursor chemistry) to a classical full tabulation method. Discrepancies of soot concentration between the two LES calculations will be analyzed and the sensitivity to the chemical models will be investigated.


2001 ◽  
Vol IV.01.1 (0) ◽  
pp. 355-356
Author(s):  
Hideyo Negishi ◽  
Kozo Fujii ◽  
Osamu Nakabep

1994 ◽  
Vol 47 (6S) ◽  
pp. S163-S165
Author(s):  
Douglas G. Dommermuth ◽  
Rebecca C. Y. Mui

Direct numerical simulations and large-eddy simulations of turbulent free-surface flows are currently being performed to investigate the roughening of the surface, and the scattering, radiation, and dissipation of waves by turbulence. The numerical simulation of turbulent free-surface flows is briefly reviewed. The numerical, modeling, and hardware issues are discussed.


2001 ◽  
Vol 436 ◽  
pp. 353-391 ◽  
Author(s):  
J. C. R. HUNT ◽  
N. D. SANDHAM ◽  
J. C. VASSILICOS ◽  
B. E. LAUNDER ◽  
P. A. MONKEWITZ ◽  
...  

Recent research is making progress in framing more precisely the basic dynamical and statistical questions about turbulence and in answering them. It is helping both to define the likely limits to current methods for modelling industrial and environmental turbulent flows, and to suggest new approaches to overcome these limitations. Our selective review is based on the themes and new results that emerged from more than 300 presentations during the Programme held in 1999 at the Isaac Newton Institute, Cambridge, UK, and on research reported elsewhere. A general conclusion is that, although turbulence is not a universal state of nature, there are certain statistical measures and kinematic features of the small-scale flow field that occur in most turbulent flows, while the large-scale eddy motions have qualitative similarities within particular types of turbulence defined by the mean flow, initial or boundary conditions, and in some cases, the range of Reynolds numbers involved. The forced transition to turbulence of laminar flows caused by strong external disturbances was shown to be highly dependent on their amplitude, location, and the type of flow. Global and elliptical instabilities explain much of the three-dimensional and sudden nature of the transition phenomena. A review of experimental results shows how the structure of turbulence, especially in shear flows, continues to change as the Reynolds number of the turbulence increases well above about 104 in ways that current numerical simulations cannot reproduce. Studies of the dynamics of small eddy structures and their mutual interactions indicate that there is a set of characteristic mechanisms in which vortices develop (vortex stretching, roll-up of instability sheets, formation of vortex tubes) and another set in which they break up (through instabilities and self- destructive interactions). Numerical simulations and theoretical arguments suggest that these often occur sequentially in randomly occurring cycles. The factors that determine the overall spectrum of turbulence were reviewed. For a narrow distribution of eddy scales, the form of the spectrum can be defined by characteristic forms of individual eddies. However, if the distribution covers a wide range of scales (as in elongated eddies in the ‘wall’ layer of turbulent boundary layers), they collectively determine the spectra (as assumed in classical theory). Mathematical analyses of the Navier–Stokes and Euler equations applied to eddy structures lead to certain limits being defined regarding the tendencies of the vorticity field to become infinitely large locally. Approximate solutions for eigen modes and Fourier components reveal striking features of the temporal, near-wall structure such as bursting, and of the very elongated, spatial spectra of sheared inhomogeneous turbulence; but other kinds of eddy concepts are needed in less structured parts of the turbulence. Renormalized perturbation methods can now calculate consistently, and in good agreement with experiment, the evolution of second- and third-order spectra of homogeneous and isotropic turbulence. The fact that these calculations do not explicitly include high-order moments and extreme events, suggests that they may play a minor role in the basic dynamics. New methods of approximate numerical simulations of the larger scales of turbulence or ‘very large eddy simulation’ (VLES) based on using statistical models for the smaller scales (as is common in meteorological modelling) enable some turbulent flows with a non-local and non-equilibrium structure, such as impinging or convective flows, to be calculated more efficiently than by using large eddy simulation (LES), and more accurately than by using ‘engineering’ models for statistics at a single point. Generally it is shown that where the turbulence in a fluid volume is changing rapidly and is very inhomogeneous there are flows where even the most complex ‘engineering’ Reynolds stress transport models are only satisfactory with some special adaptation; this may entail the use of transport equations for the third moments or non-universal modelling methods designed explicitly for particular types of flow. LES methods may also need flow-specific corrections for accurate modelling of different types of very high Reynolds number turbulent flow including those near rigid surfaces.This paper is dedicated to the memory of George Batchelor who was the inspiration of so much research in turbulence and who died on 30th March 2000. These results were presented at the last fluid mechanics seminar in DAMTP Cambridge that he attended in November 1999.


Author(s):  
Thomas Driant ◽  
Lakhdar Remaki ◽  
Stéphane Moreau ◽  
Alain Desrochers ◽  
Hachimi Fellouah

This paper deals with a CFD and experimental drag analysis on an isolated rotating wheel subsystem (including its accessories: tire, suspension, A-arms and fender) of a tricycle vehicle. The main goal of the present work is to study the effect of the fender on the wheel subsystem drag and its optimization. The Star CCM+ commercial code was used for the numerical simulations. Different flow conditions were simulated and some results were validated by comparison to wind tunnel experimental results. To perform drag optimization, several aerodynamic fender shapes were designed and simulated as part of the subsystem. A drastic drag reduction up to 30.6% compared to the original wheel subsystem was achieved through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document