Fungi as Biological Control Agents of Plant-Parasitic Nematodes

Author(s):  
Mohammad Reza Moosavi ◽  
Rasoul Zare
Nematology ◽  
2004 ◽  
Vol 6 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Oliver Morton ◽  
Penny Hirsch ◽  
Brian Kerry

AbstractEnvironmental concerns over conventional nematicides have led to increasing interest in the use of biological control agents to control plant-parasitic nematodes. The development of nematophagous fungi as biological control agents has revealed a need for further understanding of their infection processes. The egg-parasitic fungi, Pochonia chlamydosporia and Paecilomyces lilacinus, and the nematode trapping fungus, Arthrobotrys oligospora, have received the most attention. Through the application of biochemistry and molecular biology, aspects of their infection processes have been elucidated. This has involved the characterisation of enzymes that aid penetration of the eggshell or the nematode body wall and the identification of nematicidal toxins. This growing understanding of the biology of infection is opening new avenues in the improvement of fungi as biological control agents.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1167
Author(s):  
Pratima Subedi ◽  
Kaitlin Gattoni ◽  
Wenshan Liu ◽  
Kathy S. Lawrence ◽  
Sang-Wook Park

Plant-parasitic nematodes (PPN) are among the most economically and ecologically damaging pests, causing severe losses of crop production worldwide. Chemical-based nematicides have been widely used, but these may have adverse effects on human health and the environment. Hence, biological control agents (BCAs) have become an alternative option for controlling PPN, since they are environmentally friendly and cost effective. Lately, a major effort has been made to evaluate the potential of a commercial grade strain of plant growth-promoting rhizobacteria (PGPR) as BCAs, because emerging evidence has shown that PGPR can reduce PPN in infested plants through direct and/or indirect antagonistic mechanisms. Direct antagonism occurs by predation, release of antinematicidal metabolites and semiochemicals, competition for nutrients, and niche exclusion. However, the results of direct antagonism may be inconsistent due to unknown endogenous and exogenous factors that may prevent PGPR from colonizing plant’s roots. On the other hand, indirect antagonism may occur from the induced systemic resistance (ISR) that primes whole plants to better fight against various biotic and abiotic constraints, actuating faster and/or stronger defense responses (adaption), enhancing their promise as BCAs. Hence, this review will briefly revisit (i) two modes of PGPR in managing PPN, and (ii) the current working models and many benefits of ISR, in the aim of reassessing current progresses and future directions for isolating more effective BCAs and/or developing better PPN management strategy.


Sign in / Sign up

Export Citation Format

Share Document