Air Quality Monitoring with Lichens in India. Heavy Metals and Polycyclic Aromatic Hydrocarbons

Author(s):  
Vertika Shukla ◽  
D. K. Upreti
2013 ◽  
Vol 2 (1) ◽  
pp. 150 ◽  
Author(s):  
Jamil Rima ◽  
Karine Assaker

<p>In this study, B-Cyclodextrinn polymerized with beetroot fibers (Bio-polymer), was prepared and applied to the removal of organic and inorganic contaminants from wastewater. An investigation into the use of cross-linked cyclodextrin polyurethanes copolymerised with beetroot fibers as adsorbents for organic pollutants and heavy metals has yielded very useful results which may have an impact in future water treatment applications.</p> The Biopolymer was tested in water contaminated by dyes, polycyclic aromatic hydrocarbons (PAH) and heavy metals. The effectiveness to eliminate dyes such as methylene blue and Rhodamine B with concentrations around 100 ppm was more than 99%, while the pyrene,which was chosen as an example among PAHs, showed a potential of elimination exceeding the 97% for solutions of 10 ppm. Also, heavy metals, such as Lead, Zn, and Cu, were tested and showed an efficacy exceeding the 99.8%. The results indicated that the biopolymer developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or from contaminated groundwater.


2021 ◽  
Author(s):  
Igor Burstyn ◽  
Geoffrey H. Donovan ◽  
Yvonne L. Michael ◽  
Sarah Jovan

Polycyclic aromatic hydrocarbons (PAHs) are a component of air pollutants that are costly to measure using traditional air-quality monitoring methods. We used an epiphytic bio-indicator (moss genus: Orthotrichum) to cost-effectively evaluate atmospheric deposition of PAHs in Portland, Oregon in May 2013. However, it is unclear if measurements derived from these bioindicators are good proxies for human exposure. To address this question, we simultaneously, measured PAH-DNA adducts in blood samples of non-smokers residing close to the sites of moss measurements. We accounted for individual determinants of PAH uptake that are not related to environmental air quality through questionnaires, e.g., wood fires, consumption of barbecued and fried meats. Correlation and linear regression (to control for confounders from the lifestyle factors) evaluated the associations. We did not observe evidence of an association between PAH levels in moss and PAH-DNA adducts in blood of nearby residents, but higher level of adduct were evident in those who used wood fire in their houses in the last 48 hours. It remains to be determined whether bio-indicators in moss can be used for human health risk assessment.


2019 ◽  
Vol 10 (4) ◽  
pp. 3789-3795 ◽  
Author(s):  
Neeta Bhagat ◽  
Pranita Roy ◽  
Sohini Singh ◽  
Tanu Allen

Increasing soil pollution all over the world has instigated global concerns as enormous quantities of toxic chemicals and heavy metals like cadmium, lead, mercury, petrochemicals, insecticides, polycyclic aromatic hydrocarbons (PAHs) and chlorophenols are finding their way into the environment, affecting the land and soil, causing soil pollution and thus posing a threat and menace to health and well- being of people and ecosystem. The ubiquitous dissemination, low bioavailability, high perseverance of contaminants like poly-hydrocarbon and metals in soil have the potentially destructive effects to human health, envisages to study the biodegradation of PAHs (polycyclic aromatic hydrocarbons) and PACs (polycyclic aromatic compounds). The diversity of micro-organisms that diminish the PAHs/PACs can be utilized in the advancement of bioremediation techniques. The role of metal-tolerant, (PAH)-degrading bacteria helps in the biodegradation of organic compounds at miscellaneous polluted sites. The isolation of (PAHs)-degrading bacteria from contaminated soil samples collected from garages and petrol pumps of Delhi and NCR region was carried out in the present study.  Also, the bacterial samples were tested for the tolerance towards 4 heavy metals- arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg). Morphological studies and biochemical tests were conducted to find the genera of the bacterial samples. The study indicates that hydrocarbons were degraded by the isolates P1, P2, P4, P5, P5*, G1, G3. These isolates were also found to be tolerant at a high concentration of metals (Arsenic, Cadmium, Mercury, and Lead) as minimum inhibitory concentration (MIC) was also calculated. Antibiotic susceptibility of the isolates was tested against various antibiotics. Thus the study suggests that the isolates identified as Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae are not only PAH-degrading but metal-tolerant and antibiotic-resistant too and are of immense potential for bioremediation of contaminated soils.


Sign in / Sign up

Export Citation Format

Share Document