Control of CaV2 Calcium Channels and Neurosecretion by Heterotrimeric G Protein Coupled Receptors

Author(s):  
Mark L. Jewell ◽  
Kevin P. M. Currie
2018 ◽  
Author(s):  
Zack Zurawski ◽  
Analisa D. Thompson Gray ◽  
Lillian J. Brady ◽  
Brian Page ◽  
Emily Church ◽  
...  

ABSTRACTGi/o-coupled G-protein coupled receptors modulate neurotransmission presynaptically through inhibition of exocytosis. Release of Gβγ subunits decreases the activity of voltage-gated calcium channels (VGCC), decreasing excitability. A less understood Gβγ–mediated mechanism downstream of calcium entry is the binding of Gβγ to SNARE complexes. Here, we create a mouse partially deficient in this interaction. SNAP25Δ3 homozygote animals are developmentally normalbut impaired gait and supraspinal nociception. They also have elevated stress-induced hyperthermia and impaired inhibitory postsynaptic responses to α2A-AR, but normal inhibitory postsynaptic responses to Gi/o-coupled GABAB receptor activation. SNAP25Δ3 homozygotes have deficits in inhibition of hippocampal postsynaptic responses to 5 HT1b agonists that affect hippocampal learning. These data suggest that Gi/o-coupled GPCR inhibition of exocytosis through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.


1997 ◽  
Vol 78 (6) ◽  
pp. 3484-3488 ◽  
Author(s):  
Huanmian Chen ◽  
Nevin A. Lambert

Chen, Huanmian and Nevin A. Lambert. Inhibition of dendritic calcium influx by activation of G-protein–coupled receptors in the hippocampus. J. Neurophysiol. 78: 3484–3488, 1997. Gi proteins inhibit voltage-gated calcium channels and activate inwardly rectifying K+ channels in hippocampal pyramidal neurons. The effect of activation of G-protein–coupled receptors on action potential-evoked calcium influx was examined in pyramidal neuron dendrites with optical and extracellular voltage recording. We tested the hypotheses that 1) activation of these receptors would inhibit calcium channels in dendrites; 2) hyperpolarization resulting from K+ channel activation would deinactivate low-threshold, T-type calcium channels on dendrites, increasing calcium influx mediated by these channels; and 3) activation of these receptors would inhibit propagation of action potentials into dendrites, and thus indirectly decrease calcium influx. Activation of adenosine receptors, which couple to Gi proteins, inhibited calcium influx in cell bodies and proximal dendrites without inhibiting action-potential propagation into the proximal dendrites. Inhibition of dendritic calcium influx was not changed in the presence of 50 μM nickel, which preferentially blocks T-type channels, suggesting influx through these channels is not increased by activation of G-proteins. Adenosine inhibited propagation of action potentials into the distal branches of pyramidal neuron dendrites, leading to a three- to fourfold greater inhibition of calcium influx in the distal dendrites than in the soma or proximal dendrites. These results suggest that voltage-gated calcium channels are inhibited in pyramidal neuron dendrites, as they are in cell bodies and terminals and thatG-protein–mediated inhibition of action-potential propagation can contribute substantially to inhibition of dendritic calcium influx.


2000 ◽  
Vol 381 (5-6) ◽  
pp. 427-431 ◽  
Author(s):  
E. Leberer ◽  
D. Dignard ◽  
D.Y. Thomas ◽  
T. Leeuw

Abstract Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the βγ-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein β-subunit (Gβ) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential for transmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gβ binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L ϕP L I/V x ϕϕβ (x: any residue; ϕ: A, I, L, S, or T; β: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (G̱β̱ ḇinding) motif, is specifically responsible for binding of Gβ to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.


Sign in / Sign up

Export Citation Format

Share Document