On the Numerical Solutions of Boundary Value Problems in the Plane for the Electrical Impedance Equation: A Pseudoanalytic Approach for Non-Smooth Domains

Author(s):  
Cesar Marco Antonio Robles Gonzalez ◽  
Ariana Guadalupe Bucio Ramirez ◽  
Marco Pedro Ramirez Tachiquin ◽  
Victor Daniel Sanchez Nava
2021 ◽  
Author(s):  
Sujaul Chowdhury ◽  
Mubin Md. Al Furkan ◽  
Nazmus Sayadat Ifat

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Suheel Abdullah Malik ◽  
Ijaz Mansoor Qureshi ◽  
Muhammad Amir ◽  
Ihsanul Haq

We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE) and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA), interior point algorithm (IPA), and active set algorithm (ASA). The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.


2019 ◽  
Vol 11 (07) ◽  
pp. 1950062
Author(s):  
S. Farmani ◽  
M. Ghaeini-Hessaroeyeh ◽  
S. Hamzehei-Javaran

A new finite element approach is developed here for the modeling of boundary value problems. In the present model, the finite element method (FEM) is reformulated by new shape functions called spherical Hankel shape functions. The mentioned functions are derived from the first and second kind of Bessel functions that have the properties of both of them. These features provide an improvement in the solution accuracy with number of elements which are equal or lower than the ones used by the classic FEM. The efficiency and accuracy of the suggested model in the potential problems are examined by several numerical examples. Then, the obtained results are compared with the analytical and numerical solutions. The comparisons indicate the high accuracy of the present method.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750069 ◽  
Author(s):  
Mustafa Turkyilmazoglu

The newly proposed analytic approximate solution method in the recent publications [Turkyilmazoglu, M. [2013] “Effective computation of exact and analytic approximate solutions to singular nonlinear equations of Lane-Emden-Fowler type,” Appl. Math. Mod. 37, 7539–7548; Turkyilmazoglu, M. [2014] “An effective approach for numerical solutions of high-order Fredholm integro-differential equations,” Appl. Math. Comput. 227, 384–398; Turkyilmazoglu, M. [2015] “Parabolic partial differential equations with nonlocal initial and boundary values,” Int. J. Comput. Methods, doi: 10.1142/S0219876215500243] is extended in this paper to solve initial and boundary value problems governed by any order linear differential equations whose exact solutions are hard to obtain. Exact solutions are found from the method when the solutions are themselves polynomials. Better accuracies are achieved within the method by increasing the number of polynomials. Comparisons with some available methods show the ability of the proposed technique, even performing much better than the traditional Taylor series expansion.


Sign in / Sign up

Export Citation Format

Share Document