Molecular Control and Biochemistry of CO2 Fixation in Photosynthetic Bacteria

1996 ◽  
pp. 94-101
Author(s):  
Janet L. Gibson ◽  
Yilei Qian ◽  
George C. Paoli ◽  
James M. Dubbs ◽  
H. Howard Xu ◽  
...  
Author(s):  
Michael Kalontarov ◽  
Erica E. Jung ◽  
Aadhar Jain ◽  
Syed Saad Ahsan ◽  
David Erickson

Photosynthetic bacteria have been shown to be advantageous organisms for biofuel production due to high CO2 fixation efficiencies, fast growth rates, and lower water requirements. Recently, cyanobacteria been metabolically engineered to efficiently secrete their products into a surrounding solution. This has the advantage of potentially eliminating the requirement to harvest and post-process the organisms in order to extract a biofuel, which is one of the most energy and water expensive processes in most biodiesel production strategies. Lagging behind the development of these organisms however has been the development of new photobioreactor (PBR) strategies that can efficiently delivery light and inorganic carbon to the bacteria while extracting the secreted product and O2 from the solution phase. Hollow fiber membranes (HFMs) are a method for bubble-less gas exchange that has been shown to be effective at enhancing mass transfer in applications such as wastewater and landfill treatment. HFM technology could be used to overcome the mass transport challenges associated with photobioreactors. HFM modules have been used to increase mass transfer of CO2 to the bulk media in bench scale PBRs; however, the use of HFM fibers as both a mean to exchange and deliver a gas phase throughout a PBR has not been explored. We have characterized the passive transport along a single fiber in a miniature reactor in previous work. Here we extend our work to arrays of HFM fibers. We performed a range of experiments to characterize bacteria growth rate and distribution as a function fiber spacing and active transport through the fibers, and report optimized values for these variables.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Niall M Mangan ◽  
Michael P Brenner

Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3− transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.


2010 ◽  
Vol 46 (3) ◽  
pp. 119-127 ◽  
Author(s):  
KEN SASAKI ◽  
CHIHIRO HARA ◽  
KENJI TAKENO ◽  
HIROSHI OKUHATA ◽  
HITOSHI MIYASAKA

Sign in / Sign up

Export Citation Format

Share Document