fiber spacing
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Junjie Xiong ◽  
Han Wang ◽  
Xingzi Lan ◽  
Yaqi Wang ◽  
Zixu Wang ◽  
...  

Abstract Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.


Author(s):  
Apratim Mukherjee ◽  
Haonan Zhang ◽  
Katherine Ladner ◽  
Megan Brown ◽  
Jacob Urbanski ◽  
...  

Ovarian cancer is routinely diagnosed long after the disease has metastasized through the fibrous sub-mesothelium. Despite extensive research in the field linking ovarian cancer progression to increasingly poor prognosis, there are currently no validated cellular markers or hallmarks of ovarian cancer that can predict metastatic potential. To discern disease progression across a syngeneic mouse ovarian cancer progression model, here, we fabricated extracellular-matrix mimicking suspended fiber networks: crosshatches of mismatch diameters for studying protrusion dynamics, aligned same diameter networks of varying inter-fiber spacing for studying migration, and aligned nanonets for measuring cell forces. We found that migration correlated with disease, while force-disease biphasic relationship exhibited f-actin stress-fiber network dependence. However, unique to suspended fibers, coiling occurring at tips of protrusions and not the length or breadth of protrusions displayed strongest correlation with metastatic potential. To confirm that our findings were more broadly applicable beyond the mouse model, we repeated our studies in human ovarian cancer cell lines and found that the biophysical trends were consistent with our mouse model results. Altogether, we report complementary high throughput and high content biophysical metrics capable of identifying ovarian cancer metastatic potential on time scale of hours. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2021 ◽  
pp. 002199832110408
Author(s):  
Narayan Sharma ◽  
Prasant Kumar Swain ◽  
Dipak Kumar Maiti ◽  
Bhrigu Nath Singh

In this paper, the dynamic and aeroelastic analysis of variable fiber spacing composite (VFSC) laminated plates are carried out. The effects and benefits of changing the fiber distribution pattern on natural frequency and mode shape are explored taking various boundary conditions. Taking cantilever boundary condition flutter characteristics of VFSC plate with different fiber distribution patterns are compared. Further stochasticity of flutter velocity due to randomness in material properties that could arise due to complex manufacturing and fabrication process of VFSC laminates is investigated. The perturbation technique is implemented to perform the stochastic as well as reliability analysis. Various parametric studies are conducted to check the accuracy and efficiency of perturbation technique, by comparing the results with that of Monte Carlo simulation and the first-order reliability method.


Fibers ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 27 ◽  
Author(s):  
Daniela Lubasova ◽  
Anil N. Netravali

The fast and precise fabrication of three-dimensional (3-D) structures made of nanofibers is an important development trend in the electrospinning technique. This paper describes a new and facile method of electrospinning to fabricate nanofibrous 3-D structures. The nanofibrous 3-D structures can be engineered to have the desired layer thicknesses, where the fiber spacing, density (i.e., fiber volume/unit volume), as well as shape of the structure may be controlled. While innumerable structural variations are possible with this method, this paper discusses, as proof-of-concept, a few cases that illustrate how 3-D nanofiber webs can be made for filtration application. Computerized automation of the method will make it possible to build almost any 3-D web structure suitable for a myriad of applications including ultra-light-weight insulation and scaffolds for hydrogel preparation and tissue.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 294 ◽  
Author(s):  
Arzan Dotivala ◽  
Kavya Puthuveetil ◽  
Christina Tang

For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary as the fiber spacing achieved using electrospinning with the rotating drum was ~10 microns while fiber spacing achieved using shear force fiber spinning was ~250 microns. To expand to additional polymer systems, we use polymer entanglement and capillary number. Solution properties that favor large capillary numbers (>50) prevent droplet breakup to facilitate fiber formation. Draw-down ratio was useful for determining appropriate process conditions (flow rate, rotational speed of the collector) to achieve continuous formation of fibers. These rules of thumb for considering the polymer solution properties and process parameters are expected to expand use of this platform for creating hierarchical structures of multiple fiber layers for cell scaffolds and additional applications.


2019 ◽  
Vol 116 (3) ◽  
pp. 416a
Author(s):  
Aniket Jana ◽  
Intawat Nookeah ◽  
Jugroop Singh ◽  
Bahareh Behkam Behkam ◽  
Aime T. Franco ◽  
...  
Keyword(s):  

Lab on a Chip ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 3641-3651 ◽  
Author(s):  
Carmen M. Morrow ◽  
Apratim Mukherjee ◽  
Mahama A. Traore ◽  
Eric J. Leaman ◽  
AhRam Kim ◽  
...  
Keyword(s):  

Integrating ECM-mimicking nanofibers with biochemical gradients reveals that fiber spacing-driven cell shape broadens chemotaxis sensitivity in fibroblasts compared to 2D flat substrata.


2018 ◽  
Vol 941 ◽  
pp. 2154-2159 ◽  
Author(s):  
Antonio Lanzotti ◽  
Massimo Martorelli ◽  
Teresa Russo ◽  
Antonio Gloria

Additive Manufacturing technologies allow for the direct fabrication of lightweight structures with improved properties. In this context, Fused Deposition Modelling (FDM) has also been considered to design 3D multifunctional scaffolds with complex morphology, tailored biological, mechanical and mass transport properties. As an example, poly (ε-caprolactone) (PCL), surface-modified PCL and PCL-based nanocomposite scaffolds were fabricated and analysed. The effects of structural and morphological features (i.e., sequence of stacking, fiber spacing distance, pore size and geometry), surface modification and nanoparticles on the in vitro biological and mechanical performances were investigated.


Sign in / Sign up

Export Citation Format

Share Document