Total Artificial Hearts

Author(s):  
E. Solis ◽  
C. Muneretto ◽  
C. Cabrol
Keyword(s):  
BMJ ◽  
1965 ◽  
Vol 1 (5449) ◽  
pp. 1510-1510
Keyword(s):  

1997 ◽  
Vol 20 (1) ◽  
pp. 37-42 ◽  
Author(s):  
K. Mabuchi ◽  
T. Chinzei ◽  
Y. Abe ◽  
K. Imanishi ◽  
T. Isoyama ◽  
...  

An electrochemical sensor system to allow real-time measurement and feedback of catecholamine concentrations was developed for use in the control of artificial hearts. Electrochemical analyses were carried out using a carbon fiber working electrode, an Ag-AgCI reference electrode, and a potentiostat. The operating parameters of the pneumatically-driven artificial heart system were altered in accordance with the algorithm for changes in the catecholamine concentration. The minimum detectable concentrations of both adrenaline and noradrenaline in a mock circulatory system using a phosphate-buffered solution were approximately 1-2 ng/ml (10-8 mol/L). An artificial heart control system utilizing this set-up performed satisfactorily without delay, although sensor sensitivity decreased when placed in goat plasma instead of a phosphate-buffered solution, due to the adsorption of various substances such as plasma proteins onto the electrodes. This study demonstrated the future feasibility of a feedback control system for artificial hearts using catecholamine concentrations.


1965 ◽  
Vol 161 (3) ◽  
pp. 365-371 ◽  
Author(s):  
TETSUZO AKUTSU ◽  
VELIMIR MIRKOVITCH ◽  
STEPHEN R. TOPAZ ◽  
AMARENDRA SEN GUPTA
Keyword(s):  

2007 ◽  
Vol 129 (11) ◽  
pp. 1422-1427 ◽  
Author(s):  
Takayuki Suzuki ◽  
Romain Prunières ◽  
Hironori Horiguchi ◽  
Tomonori Tsukiya ◽  
Yoshiyuki Taenaka ◽  
...  

In centrifugal pumps for artificial hearts, a magnetic drive with lightly loaded journal bearing system is often used. In such a system, the rigidity of the bearing is small and the impeller usually rotates over the critical speed. In such cases, the rotordynamic fluid forces play an important role for shaft vibration. In the present study, the characteristics of the rotordynamic fluid forces on the impeller were examined. The rotordynamic fluid forces were measured in the cases with/without the whirling motion. It was found that the rotordynamic forces become destabilizing in a wide range of positive whirl. The effect of leakage flow was also examined.


1986 ◽  
Vol 315 (22) ◽  
pp. 1398-1401 ◽  
Author(s):  
Thomas R. Schwab ◽  
Brooks S. Edwards ◽  
William C. DeVries ◽  
Robert S. Zimmerman ◽  
John C. Burnett

ASAIO Journal ◽  
1962 ◽  
Vol 8 (1) ◽  
pp. 140-144 ◽  
Author(s):  
John Bindels
Keyword(s):  

2005 ◽  
Vol 28 (11) ◽  
pp. 1079-1090 ◽  
Author(s):  
F. Fabretti ◽  
J. Huebner

Enterococci are natural inhabitants of the gastrointestinal tract and of the female genital tract of humans and many animals. In recent years, enterococci have been increasingly recognized as important human pathogens causing infections associated with medical devices. Their resistance to most antimicrobial agents and their ability to form biofilm has contributed to the increasing incidence of nosocomial enterococcal infections. Enterococci possess a capsular polysaccharide composed of a glycerol-teichoic acid-like molecule consisting of repeating units of 6-α-D-glucose-1-2-glycerol-3-PO4, substituted on carbon 2 with a α-2,1-linked molecule of glucose. Using both immunologic and genetic data E. faecalis can be assigned to specific serotypes based on capsular polysaccharides. Clinical examples of foreign-body infections due to enterococci are described, comprising infections of artificial joints, implanted intravascular catheters, artificial hearts and artificial valves, stents, liquor shunt devices, and intraocular infections. Methods to prevent and/or treat enterococcal infections are presented.


Author(s):  
Gaurav Girdhar ◽  
Yared Alemu ◽  
Michalis Xenos ◽  
Jawaad Sheriff ◽  
Jolyon Jesty ◽  
...  

Flow past mechanical heart valves (MHV) in mechanical circulatory support devices including total artificial hearts and ventricular assist devices, is primarily implicated in thromboembolism due to non-physiological flow conditions where the elevated stresses and exposure times are sufficiently high to cause platelet activation and thrombus formation. Mitigation of this risk requires lifelong anticoagulation therapy and less thrombogenic MHV designs should therefore be developed by device manufacturers [1].


Sign in / Sign up

Export Citation Format

Share Document