Conventional Terrestrial Reference Frames

Author(s):  
Ivan I. Mueller
1980 ◽  
Vol 56 ◽  
pp. 205-216
Author(s):  
Douglas S. Robertson

AbstractPresent knowledge of the number, distribution, proper motion and structures of extragalactic radio sources indicates that there should be no problem in defining a celestial reference frame with stabilities of a few milliseconds of arc over time spans of the order of a decade. One of the limiting factors appears to be the structure of the sources. By measuring and monitoring these structures, the stability could probably be improved by as much as one or two orders of magnitude. Even without this improvement, a network of properly distributed fixed observatories making regular interferometric observations of these radio sources could be used to define a terrestrial coordinate system that could be maintained at the few centimeter level over indefinitely long time periods. Such a stable terrestrial reference system would be useful for a host of modern geodetic and geodynamic applications, including, in particular, studies of the time varying deformations and relative motions of lithospheric plates. The National Geodetic Survey has already begun work on a three station base network of permanent observatories under project POLARIS as a first step toward implementing the new celestial and terrestrial reference frames. It is hoped that others will join in the effort and make the new reference frames a reality by the middle of this decade.


2018 ◽  
Vol 93 (5) ◽  
pp. 655-667 ◽  
Author(s):  
Susanne Glaser ◽  
Rolf König ◽  
Karl Hans Neumayer ◽  
Tobias Nilsson ◽  
Robert Heinkelmann ◽  
...  

1993 ◽  
Vol 156 ◽  
pp. 159-171
Author(s):  
C. Ma ◽  
J. L. Russell

Dual frequency Mark III VLBI observations acquired since 1979 by several geodetic and astrometric observing programs have been used to establish precise celestial and terrestrial reference frames. The program to establish a uniformly distributed celestial reference frame of ∼400 compact radio sources with optical counterparts was begun in 1987. Some 700 sources have been considered as part of this effort and a preliminary list of ∼400 has been observed. At present, 308 sources have formal 1σ errors less than 1 mas in right ascension and 308 have similar precision in declination. The astrometric results include some data acquired for geodetic purposes. The geodetic results using data to September, 1992 include the positions of 105 sites with formal 1σ horizontal errors generally less than 1 cm at 1992.6 and the velocities of 64 sites with formal 1σ horizontal errors generally better than 2 mm/yr.


2021 ◽  
Author(s):  
Justyna Śliwińska ◽  
Małgorzata Wińska ◽  
Jolanta Nastula

<p>Assessing the impact of continental hydrosphere and cryosphere on polar motion (PM) variations is one of the crucial tasks in contemporary geodesy. The pole coordinates, as one of the Earth Orientation Parameters, are needed to define the relationship between the celestial and terrestrial reference frames. Therefore, the variations in PM should be monitored and interpreted in order to assess the role of geophysical processes in this phenomenon.</p><p>The role of hydrological and cryospheric signals in PM is usually examined by computing hydrological excitation (hydrological angular momentum, HAM) and cryospheric excitation (cryospheric angular momentum, CAM) of  PM, commonly treated together as HAM/CAM.</p><p>The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions deliver temporal variations of the gravity field resulting from changes in global mass redistribution. The so-called GRACE/GRACE-FO Level-3 (L3) data delivers changes in terrestrial water storage (TWS) that can be used for computation of HAM/CAM.</p><p>For best possible representation of TWS, a number of corrections are introduced in the L3 data by computing centres. Such corrections are, among others, glacial isostatic adjustment (GIA) correction, geocenter correction and C<sub>20</sub> coefficient correction.</p><p>The main goal of this study is to examine the impact of corrections included in GRACE/GRACE-FO data on HAM/CAM determined. More specifically, we test their influence on HAM/CAM trends, seasonal changes and non-seasonal variations. We also examine the change in compliance between HAM/CAM and hydrological plus cryospheric signal in geodetically observed excitation when the corrections are used. To achieve our goals, we use GRACE and GRACE-FO L3 datasets provided by Jet Propulsion Laboratory (JPL), Center for Space Research (CSR), and Goddard Space Flight Center (GSFC).</p>


Sign in / Sign up

Export Citation Format

Share Document