lithospheric plates
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 44)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 946 (1) ◽  
pp. 012009
Author(s):  
V V Snakin

Abstract The merging of lithospheric plates and the formation of supercontinents are considered to be the main causes of global species extinctions within the Earth’s biosphere. Under those conditions, the factor of geographic isolation is diminished and interspecies competition is accelerated, allowing for the survival of the best-adapted species. The divergence of lithospheric plates triggers a new spurt of speciation that surpasses the previous one, as it involves the participation of the winning species.


2021 ◽  
Vol 946 (1) ◽  
pp. 012011
Author(s):  
Yu V Fedotova ◽  
P A Anikin ◽  
M I Potapchuk

Abstract Geodynamic activity of the Earth’s crust depends on the parameters of the movement of lithospheric plates and stress fields, both inherited in aseismic areas and modified in seismic active ones. Geomechanical processes occur in rock mass under the influence of various natural (endogenous and exogenous) and man-made (anthropogenic) factors. The degree of influence of these factors on the change in the energy saturation of blocks of various ranks will depend on various factors. In the geological environment of natural and man-made systems, there are dynamic phenomena of various energy levels from acoustic noise (microseismic) to rockburst and mining-induced earthquakes, that is, there is always a geodynamic risk in the geological environment of natural and man-made systems, especially in mining ones. The conditions of the geodynamic risks occurrence at specific deposits are considered on the example of rockburst hazardous deposits in the Far Eastern region of the Russian Federation. The influence of natural seismic activity on the realization of mining-induced seismicity is shown.


2021 ◽  
Vol 13 (23) ◽  
pp. 4872
Author(s):  
Kamil Maciuk ◽  
Michal Apollo ◽  
Anita Kukulska-Kozieł ◽  
Paulina Lewińska

The Earth’s surface is under permanent alteration with the area of some nations growing or shrinking due to natural or man-made processes, for example sea level change. Here, based on the NUVEL 1A model, we forecast (in 10, 25, and 50 years) the changes in area for countries that are located on the border of the major tectonic plates. In the analysis we identify countries that are projected to gain or lose land due to the tectonic plate movement only. Over the next 50 years, the global balance of area gains (0.4 km2) and losses (12.7 km2) is negative. Thus, due to the movements of lithospheric plates, the land surface of the Earth will decrease by 12 km2 in 50 years. Overall, the changes are not that spectacular, as in the case of changes in sea/water levels, but in some smaller countries, projected losses exceed a few thousand square metres a year, e.g., in Nepal the losses exceed 10,000 m2 year−1. Methodologically, this paper finds itself between metric analysis and essay, trying to provoke useful academic discussion and incite educators’ interests to illustrate to students the tectonic movement and its force. Limitations of the used model have been discussed in the methodology section.


Geofizika ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 61-80
Author(s):  
Hilmi Dindar ◽  
Mustafa Akgün ◽  
Cavit Atalar ◽  
Özkan Cevdet Özdağ

Single-station microtremor measurements were conducted to investigate earthquake and soil behaviour for the first time in Nicosia, Cyprus. Cyprus is located in a tectonically complex area in the Eastern Mediterranean where three plates meet. The study area was chosen to cover the areas to be opened for new development. Nicosia, the capital of Cyprus, is also the island's most important cultural, industrial, commercial, and transportation centre. The study creates base maps for the soil to assess earthquake resistance crucial for construction. Microtremor Method was applied at 100 stations and the Multi-Channel Analysis of Surface Waves (MASW) method was used at 52 stations. Also, RefractionMicrotremor (Re-Mi) and L-Shaped Spatial Autocorrelation (L-SPAC) methods were carried out at 17 stations to substantiate the research. The results of the microtremor method indicate that the predominant soil period values have an average of 1 second and pre-dominant peak period values are generally found between 0.1 to 5 s at the study area. Peak amplitude values are observed between 1 and 2.4. The Vulnerability Index Parameter (Kg) exceeded 20 at the central and the southern stations, and Kg values change between 7 and 54 units. The Kg values were found to be higher than 20 in soils where shear wave velocity is lower than 760 m/s. At the same time, the values of the predominant peak period were greater than 1 second. Cyprus is located in the Alpine Himalayan earthquake zone. The Cyprus Arc is known as the main seismic source of the island, It constitutes the tectonic border among African and Eurasian lithospheric plates in the region. During an earthquake in Nicosia, seismic waves will be amplified by an average of 1.5 times and soil deformation will occur due to the exceeding elastic limits. The results provided important insight into soil behaviour and indicated its reactions in a potential earthquake.


2021 ◽  
Vol 2 (2) ◽  
pp. 9-16
Author(s):  
Natalia A. Bushenkova ◽  
Olga A. Kuchay

The seismotectonic deformations were determined in the Pacific and Okhotsk (Eurasian) lithospheric plates subduction zone based on 2458 mechanisms of earthquake foci data for 1977-2019. The deformation features of medium in different deep layers are shown. The deformation field uniformity in the depth range of 1-70 km and the deformation field inhomogeneity for the submerged plate deep parts (105-200, 200-400 and 400-700 km) are revealed. One of the deformations field change reasons is the influence of ascending and, especially, descending currents of thermogravitational convection in the upper mantle sublithospheric part, in particular, the convection structure influence on the subducting plate geometry


2021 ◽  
Author(s):  
Chiara Civiero ◽  
Sergei Lebedev ◽  
Nicolas L. Celli

<p>Hot plumes rising from Earth’s deep mantle are thought to form broad plume heads beneath lithospheric plates. In continents, mantle plumes cause uplift, rifting and volcanism, often dispersed over surprisingly broad areas. Using seismic waveform tomography, we image <span>a star-shaped, low-velocity anomaly centered at Afar and composed of three narrow branches: beneath East Africa, beneath the Gulf of Aden, and beneath the Red Sea and West Arabia, extending north to Levant. We interpret this anomaly as the seismic expression of </span>interconnected corridors of hot, partially molten rock beneath the East Africa-Arabia region. The corridors underlie areas of uplift, rifting and volcanism and accommodate an integral, active plume head. Eruption ages and plate reconstructions indicate that it developed south-to-north, and tomography shows it being fed by three deep upwellings beneath Kenya, Afar and Levant. <span>These results demonstrate the complex feedbacks between the continental-lithosphere heterogeneity and plume-head evolution. </span>Star-shaped plume heads sprawling within thin-lithosphere valleys can account for the enigmatic dispersed volcanism in large igneous provinces and are likely to be a basic mechanism of plume-continent interaction.</p>


2021 ◽  
Author(s):  
Marianne Greff-Lefftz ◽  
Isabelle Panet ◽  
Jean Besse

<p>Hotspots are thermal instabilities that originate in the mantle and manifest themselves on the surface by volcanism, continental breaks or "traces" observed in the oceans. Theirs effects under the continents are still debated: in addition to a phase of activity associated with surface volcanism, a residual thermal anomaly could persist durably under the lithosphere along the trajectory of the hotspot.<br>For a simple model of thermal anomaly (parallelogram aligned in a fixed direction), we compute the perturbations of the geoid, of the gravity vector and of the associated gravity gradients. We show that in a coordinate system aligned with the parallelogram, gravity gradients have a characteristic signal with an order of magnitude of a few hundred mEotvos, well above the current data detection level. Thus for four real cases: in North Africa (with the Hoggar, Tibesti, Darfur and Cameroon hotspots), in Greenland (Iceland and Jan Mayen), in Australia (Cosgrove) and in Europe (Eifel), we calculate the paleo-positions of the hotspots during the last 100 Ma in a reference frame linked to the lithospheric plates, and we build maps of gravity gradients at different altitudes filtered at the spatial scale of a few hundred kilometers (scale of the hotspot) and oriented along the direction of the trajectory.<br>We clearly find signals aligned in the direction of the movement of the plates on spatial scales of a few hundred kilometers.<br>This signal is sometimes correlated with the topography and it is difficult to separate the sources resulting from volcanic edifices and their associated isostatic crustal roots from that induced by residual thermal anomaly. These results show that gradiometric data are able to detect and follow the tracks of hotspots in the continental lithosphere, during at least a few tens of millions of years, providing new clues to constrain their trajectory and improve reference frame tied to the mantle.</p>


2021 ◽  
Author(s):  
Yossi Mart ◽  
Liran Goren ◽  
Einat Aharonov

<p>The post-Triassic age of all oceanic lithospheres indicates the efficiency and the sustainability of lithospheric subduction, which consumes the basaltic seafloor and recirculates it in the upper mantle. Since at present the initiation of subduction is very rare, comprehension of this cardinal process should be carried through modeling – numeric or analog. While deciphering processes through numeric modeling is commonly comprehensive, the analog models can determine major factor that constrain a tectonic procedure. Analog centrifuge experiments were applied to initiate self-sustained modelled subduction, trying to determine the critical factors that trigger its early stages.</p><p>Analytically we presumed that where densities of two lithospheric plates, juxtaposed across a weakness zone, exceed a critical value, then the denser lithosphere eventually will drive underneath the lighter one, provided the friction across the interface is not too high. Consequently, analog experiments were carried out in a centrifuge at acceleration of ca. 1000 g., deforming miniaturized models of three layers representing the asthenosphere, the ductile and the brittle lithosphere. The lithospheres were modeled to include lighter and denser components, juxtaposed along a slightly lubricated contact plane, where the density difference between these components was ca. 200 kg/m<sup>3</sup>. No mechanism of lateral force was applied in the experiment (even though such a vector exists in nature due to the seafloor spreading at the oceanic ridges), to test the possibility of subduction in domains where such a force is minor or non-existent.</p><p>The analog experiments showed that the penetration of the denser modeled lithosphere under the lighter one led to extension and subsequent break-up of the over-riding plate. That break-up generated seawards trench rollback, normal faulting, rifting, and formed proto-back-arc basins. Lateral differential reduction of the friction between the juxtaposed plates led to the development of arcuate subduction zones. The experimental miniaturization, and subsequent numerical and analytical modeling, suggest that the observed deformation in the analog models could be meaningful to the planet as well.</p><p>Constraints of the analog experimentation setting did not enable the modeling of the subduction beyond the initial stages, but there is ground to presume that at depths of 40-50 km, metamorphic processes of the generation of eclogites would change the initial mineralogy on the subducting plate. Reactions with water would convert basalts into metamorphic serpentinites and schists. Higher temperatures and pressures would melt parts of the subducted slab to generate felsic magmas, which would ascend towards the surface diapirically due to their lighter density. Alternately, low availability of H<sub>2</sub>O would gradually alter the oceanic basalt and gabbro into eclogite, which would sink into the mantle due to its increased density.</p>


2021 ◽  
Author(s):  
Fanny Garel ◽  
Catherine Thoraval ◽  
Andrea Tommasi ◽  
Sylvie Demouchy ◽  
D. Rhodri Davies

<p>Deformed plate boundaries, rigid lithospheric plates, and the more deformable asthenospheric mantle underneath, are for the most part made of homogeneous peridotite, which most abundant mineral is olivine. The key ingredient explaining such contrasted mechanical properties is the rheology, with deformation mechanisms depend on physical conditions and on intrinsic, possibly inherited, material properties such as grain size or crystal orientation. Here, we investigate plate break-up using thermo-mechanical models of subduction with a deforming upper plate. Our models feature cutting-edge low-temperature dislocation creep ensuring a continuity in rheology from asthenosphere to lithosphere. We discuss the dynamical transition from lithosphere to asthenosphere at the base of the plates, and how this transitions shallows during plate extension. The potential of deformation to localize from the base of the lithospheric plate is evaluated through the partitioning between diffusion and dislocation creep and its evolution resulting from a feedback related to strain-rate dependent viscosity. We analyze the evolution of physical fields to understand why deformation sometimes (but not always) localize to form a new plate boundary.</p>


2021 ◽  
Vol 118 (4) ◽  
pp. e2011247118
Author(s):  
David Bercovici ◽  
Elvira Mulyukova

How subduction—the sinking of cold lithospheric plates into the mantle—is initiated is one of the key mysteries in understanding why Earth has plate tectonics. One of the favored locations for subduction triggering is at passive margins, where sea floor abuts continental margins. Such passive margin collapse is problematic because the strength of the old, cold ocean lithosphere should prohibit it from bending under its own weight and sinking into the mantle. Some means of mechanical weakening of the passive margin are therefore necessary. Spontaneous and accumulated grain damage can allow for considerable lithospheric weakening and facilitate passive margin collapse. Grain damage is enhanced where mixing between mineral phases in lithospheric rocks occurs. Such mixing is driven both by compositional gradients associated with petrological heterogeneity and by the state of stress in the lithosphere. With lateral compressive stress imposed by ridge push in an opening ocean basin, bands of mixing and weakening can develop, become vertically oriented, and occupy a large portion of lithosphere after about 100 million y. These bands lead to anisotropic viscosity in the lithosphere that is strong to lateral forcing but weak to bending and sinking, thereby greatly facilitating passive margin collapse.


Sign in / Sign up

Export Citation Format

Share Document