Combination of terrestrial reference frames based on space geodetic techniques in SHAO: methodology and main issues

2017 ◽  
Vol 17 (9) ◽  
pp. 089
Author(s):  
Bing He ◽  
Xiao-Ya Wang ◽  
Xiao-Gong Hu ◽  
Qun-He Zhao
2021 ◽  
Author(s):  
Chaiyaporn Kitpracha ◽  
Robert Heinkelmann ◽  
Markus Ramatschi ◽  
Kyriakos Balidakis ◽  
Benjamin Männel ◽  
...  

<p>Atmospheric ties are induced by differences between the set-up of observing geodetic systems at co-location sites, are mainly attributed to frequency and position, and are usually quantified by zenith delay and gradient component offsets derived by weather models or in situ instuments.. Similar to local ties, they could be applied to combine datasets from several space geodetic techniques, thus contributing to the improvement of the realization of terrestrial reference frames (TRF). Theoretically, atmospheric ties are affected only by the height differences between antennas at the same site and meteorological conditions. Therefore, atmospheric ties could be determined analytically based on meteorological information from in situ measurements or weather models. However, there is often a discrepancy between the expected zenith delay differences and those estimated from geodetic analysis, potentially degrading a combined atmospheric ties solution should tight constraints be used. In this study, we set up a GNSS experiment campaign on the rooftop of a building in Telegrafernberg that offers unobscured data coverage for one month. We compared the estimated zenith delay and gradients from GNSS stations in this experiment, applying atmospheric ties from (1) meteorological data from the Global Pressure and Temperature model 3 (GPT3), (2) ERA5 reanalysis, and (3) in-situ measurements, as well as corrections derived from ray tracing (Potsdam Mapping Functions, PMF). The results show that atmospheric ties employing GPT3, ERA5, in-situ measurements, and ray tracing has an excellent and comparable performance in term of bias mitigation, but not in term of standard deviation, for zenith delay. Moreover, the unexpected bias in zenith delay was identified in the antenna with radome installation. A significantly large bias was identified in estimated gradients; the source of this discrepancy has been traced back to unmitigated multipath effects in this experiment.</p>


2020 ◽  
Author(s):  
Chaiyaporn Kitpracha ◽  
Kyriakos Balidakis ◽  
Robert Heinkelmann ◽  
Harald Schuh

<p>Atmospheric ties are affected by the differences of atmospheric parameters of space geodetic techniques at co-location sites. Similar to local ties, they could be applied along with local ties for a combination of space geodetic techniques to improve the realization of terrestrial reference frames (TRF). Theoretically, atmospheric ties are affected by the height differences between antennas at the same site and meteorological conditions. Therefore, atmospheric ties could be determined by analytical equation based on meteorological information from in situ measurements or weather model. However, there is often a discrepancy between the expected zenith delay differences and those estimated from geodetic analysis, thus potentially degrading a combined atmospheric ties solution. In this study, we analyse the time series of zenith delays from co-located GNSS antennas at Wettzell (height differences below 3 meters), for 11 years (2008–2018). GNSS observations were analyzed with Bernese GNSS software version 5.2 with double-differencing technique and relative tropospheric delay and gradients were estimated with L1, L2, and the ionosphere-free (L3) linear combination thereof. Atmospheric ties were derived analytically employing meteorological data from Global Pressure and Temperature model 3 (GPT3) and ERA5 reanalysis, as well as corrections derived from ray tracing (Potsdam Mapping Functions, PMF). The comparison shows that zenith delay differences are dominated by equipment changes. The discrepancies between atmospheric ties and estimated zenith delay differences are frequency dependent, with the L1 solutions being the least biased. For these small vertical differences, seasonal signals are not significant for all frequencies.</p>


1980 ◽  
Vol 56 ◽  
pp. 205-216
Author(s):  
Douglas S. Robertson

AbstractPresent knowledge of the number, distribution, proper motion and structures of extragalactic radio sources indicates that there should be no problem in defining a celestial reference frame with stabilities of a few milliseconds of arc over time spans of the order of a decade. One of the limiting factors appears to be the structure of the sources. By measuring and monitoring these structures, the stability could probably be improved by as much as one or two orders of magnitude. Even without this improvement, a network of properly distributed fixed observatories making regular interferometric observations of these radio sources could be used to define a terrestrial coordinate system that could be maintained at the few centimeter level over indefinitely long time periods. Such a stable terrestrial reference system would be useful for a host of modern geodetic and geodynamic applications, including, in particular, studies of the time varying deformations and relative motions of lithospheric plates. The National Geodetic Survey has already begun work on a three station base network of permanent observatories under project POLARIS as a first step toward implementing the new celestial and terrestrial reference frames. It is hoped that others will join in the effort and make the new reference frames a reality by the middle of this decade.


2018 ◽  
Vol 93 (5) ◽  
pp. 655-667 ◽  
Author(s):  
Susanne Glaser ◽  
Rolf König ◽  
Karl Hans Neumayer ◽  
Tobias Nilsson ◽  
Robert Heinkelmann ◽  
...  

2021 ◽  
Author(s):  
Helene Wolf ◽  
Johannes Böhm ◽  
Matthias Schartner ◽  
Urs Hugentobler

<p>Over the last years, ideas have been proposed to install a Very Long Baseline Interferometry (VLBI) transmitter on one or more satellites of the Galileo constellation. Satellites transmitting signals that can be observed by VLBI telescopes provide the opportunity of extending the current VLBI research with observations to geodetic satellites. These observations offer a variety of new possibilities such as high precision tying of space geodetic techniques but also the direct determination of the absolute orientation of the satellite constellation with respect to the International Celestial Reference Frame (ICRF) and have implications on the determination of long-term reference frames. </p><p>This contribution provides a visibility study of the Galileo satellites from a VLBI network. The newly developed satellite scheduling module in VieSched++ is used to determine the time periods during which a satellite is observable from a VLBI network. The possible satellite observations are evaluated through the number of stations from which a satellite is observable. Moreover, the impact on determining the orientation of the satellite constellation, caused by the observation geometry, is investigated with using the UT1-UTC Dilution of Precision (UDOP) factor.</p>


Sign in / Sign up

Export Citation Format

Share Document