Surface Residual Stress Effects on Stress Corrosion Cracking Behavior of AISI 4340 Steel

Author(s):  
R. A. Hays ◽  
R. W. Hendricks ◽  
R. E. Swanson
CORROSION ◽  
1969 ◽  
Vol 25 (8) ◽  
pp. 342-344 ◽  
Author(s):  
A. TIRMAN ◽  
E. G. HANEY ◽  
PAUL FUGASSI

Abstract The resistance to stress corrosion cracking of AISI 4340 steel foil in 0.6M aqueous sodium chloride, acidified to pH 1.5 with hydrochloric acid, is greatly decreased by prior treatment of the specimens for short periods of time with aqueous and nonaqueous solutions of sulfur, organic and inorganic sulfides, sulfur dioxides, and the inorganic salts of sulfurousand sulfuric acids. It is suggested that this prior treatment produces sulfided areas which are inhibitors of the combination of atomic hydrogen into molecular hydrogen. The decreased resistance to stress corrosion cracking is thus attributed to hydrogen embrittlement. If the stress corrosion cracking test is made in 0.6M aqueous sodium chloride, adjusted to an initial pH of 8, the effect of a prior sulfiding treatment is small. The formation of such sulfided areas in practice result from the exposure of 4340 steels to industrial atmospheres which may contain hydrogen sulfide, sulfur dioxide, and elemental sulfur.


CORROSION ◽  
1972 ◽  
Vol 28 (9) ◽  
pp. 340-344 ◽  
Author(s):  
H. R. BAKER ◽  
C. R. SINGLETERRY

Abstract The effects of solutions of 16 different electrolytes on the stress corrosion cracking (SCC) of AISI 4340 steel U-bend specimens have been studied at various concentrations and at 25, 65, and 100 C (77, 149, and 212 F). Stresses were near the yield point of the alloy. In unbuffered solutions of neutral salts, there was poor correlation between time to failure and the initial or final pH of the solution. In strongly buffered solutions, there was a strong pH dependence; the time to failure in 10% NaCl increased about 100 fold between pH 4–5 and pH 7. Susceptibility to cracking increased moderately with the concentration of KNO3 solutions, but decreased with rising concentration of NaCl solutions. The cracking rate increased by 50% per 10 C for NaCl solutions. The rate increased 85% per 10 C for KNO3 solutions. KNO2 or NaNO2, dicyclohexylammonium nitrate, some K2CrO4 solutions and all alkaline solutions with a strong reserve of base inhibited SCC by factors of 10 to 100 times as compared with cracking in distilled H2O.


Author(s):  
Greg Van Boven ◽  
Ronald Rogge ◽  
Weixing Chen

Stress corrosion cracking (SCC) can occur on the exterior surface of high pressure hydrocarbon transmission pipelines fabricated from low carbon steels. Both the initiation of SCC and the ability of SCC to progressively increase in depth is a complex and poorly understood phenomena. Previous empirical evidence suggests that residual stresses may be involved in this initiation and growth process. This paper describes a laboratory research project designed to investigate the correlation between residual stress and SCC. In this project, tensile test specimens with increasing levels of compressive and tensile residual stress on the surface and through the thickness of the specimen were fabricated. These stresses were sufficiently large as to dominate the other slight variations in material properties that may occur on identically formed test specimens. The residual stresses were then mapped across the length and through the depth of the specimens by a non-destructive neutron diffraction technique. A SCC initiation process was applied to the specimens. It was found that the formation of micro-pitting, to a depth up to 200 μm, occurred preferentially in areas where tensile residual stresses were the highest (about 300 MPa). Initiation of SCC, although found all at the bottom of this micro-pitting, occurred with a 71% normalized frequency in locations where the surface residual stress was in the range of 150 MPa to 200 MPa. Experimental data revealed that cracks generated in near-neutral pH environments can be readily blunted, due to both plastic deformation (room temperature creep) and extensive dissolution. As a result, a high positive tensile residual stress gradient is necessary for developing cracks in pipeline steels exposed to near-neutral pH environments. The tensile residual stress represents a large mechanical driving force for initial crack nucleation and short crack growth. Active cracks may become dormant as the near-surface residual stress gradient changes from a high to a low tensile stress or if the stress becomes compressive due to self-equilibration through the wall thickness direction. Special conditions may exist in pipeline steels where crack dormancy may not occur within a short distance to the surface, which may include, for example, the presence of a large tensile residual stress gradient over a longer distance, particular microstructures conducive to galvanic corrosion, and special environmental conditions susceptible to hydrogen-induced cracking.


Sign in / Sign up

Export Citation Format

Share Document