X-ray Fractography of Stress Corrosion Cracking in AISI 4340 Steel Under Controlled Electrode Potential

1988 ◽  
pp. 269-276 ◽  
Author(s):  
Masaaki Tsuda ◽  
Yukio Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka
CORROSION ◽  
1969 ◽  
Vol 25 (8) ◽  
pp. 342-344 ◽  
Author(s):  
A. TIRMAN ◽  
E. G. HANEY ◽  
PAUL FUGASSI

Abstract The resistance to stress corrosion cracking of AISI 4340 steel foil in 0.6M aqueous sodium chloride, acidified to pH 1.5 with hydrochloric acid, is greatly decreased by prior treatment of the specimens for short periods of time with aqueous and nonaqueous solutions of sulfur, organic and inorganic sulfides, sulfur dioxides, and the inorganic salts of sulfurousand sulfuric acids. It is suggested that this prior treatment produces sulfided areas which are inhibitors of the combination of atomic hydrogen into molecular hydrogen. The decreased resistance to stress corrosion cracking is thus attributed to hydrogen embrittlement. If the stress corrosion cracking test is made in 0.6M aqueous sodium chloride, adjusted to an initial pH of 8, the effect of a prior sulfiding treatment is small. The formation of such sulfided areas in practice result from the exposure of 4340 steels to industrial atmospheres which may contain hydrogen sulfide, sulfur dioxide, and elemental sulfur.


CORROSION ◽  
1972 ◽  
Vol 28 (9) ◽  
pp. 340-344 ◽  
Author(s):  
H. R. BAKER ◽  
C. R. SINGLETERRY

Abstract The effects of solutions of 16 different electrolytes on the stress corrosion cracking (SCC) of AISI 4340 steel U-bend specimens have been studied at various concentrations and at 25, 65, and 100 C (77, 149, and 212 F). Stresses were near the yield point of the alloy. In unbuffered solutions of neutral salts, there was poor correlation between time to failure and the initial or final pH of the solution. In strongly buffered solutions, there was a strong pH dependence; the time to failure in 10% NaCl increased about 100 fold between pH 4–5 and pH 7. Susceptibility to cracking increased moderately with the concentration of KNO3 solutions, but decreased with rising concentration of NaCl solutions. The cracking rate increased by 50% per 10 C for NaCl solutions. The rate increased 85% per 10 C for KNO3 solutions. KNO2 or NaNO2, dicyclohexylammonium nitrate, some K2CrO4 solutions and all alkaline solutions with a strong reserve of base inhibited SCC by factors of 10 to 100 times as compared with cracking in distilled H2O.


1987 ◽  
Vol 31 ◽  
pp. 269-276 ◽  
Author(s):  
Masaaki Tsuda ◽  
Yukio Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka

The residual stress left on the fracture surface is one of the important parameters in X-ray fractography and has been used to analyze fracture mechanisms in fracture toughness and fatigue tests especially of high strength steels.In the present paper, the distribution of residual stress beneath the fracture surface made by stress corrosion cracking was measured by the X-ray diffraction method. Stress corrosion cracking tests were conducted by using compact tension specimens of 200°C tempered AISI steel in 3.5% NaCl solution environment under various electrode potentials. The effect of electrode potential on the growth kinetics of stress corrosion cracking is discussed on the basis of residual stress distribution.


1988 ◽  
Vol 32 ◽  
pp. 451-458 ◽  
Author(s):  
Zenjiro Yajima ◽  
Masaaki Tsuda ◽  
Yukio Hirose ◽  
Keisuke Tanaka

X-ray diffraction observation of the material beneath the fracture surface provides failure analysists with useful information to judge the mechanical condition of fracture.In the present paper, stress corrosion cracking (SCC) tests were conducted by using the bluntly notched compact tension (CT) specimens of 200°C tempered AISI 4340 steel in a 3.5 NaCl solution etwixonmeat. The distribution of the residual stress beneath the fracture surface near the root of the notch was measured with the X-ray diffraction technique. The effect of the notch root radius on crack nucleation with stress corrosion was discussed on the bases of the results of X-ray observation.


Sign in / Sign up

Export Citation Format

Share Document