An Approximation Algorithm for the Traveling Salesman Problem and Its Probabilistic Analysis

Author(s):  
È. Kh. Gimadi ◽  
N. I. Glebov ◽  
A. I. Serdyukov
1997 ◽  
Vol 45 (4) ◽  
pp. 639-641 ◽  
Author(s):  
Michel Gendreau ◽  
Gilbert Laporte ◽  
Alain Hertz

Author(s):  
Hanna Sumita ◽  
Yuma Yonebayashi ◽  
Naonori Kakimura ◽  
Ken-ichi Kawarabayashi

This paper focuses on a generalization of the traveling salesman problem (TSP), called the subpath planning problem (SPP). Given 2n vertices and n independent edges on a metric space, we aim to find a shortest tour that contains all the edges. SPP is one of the fundamental problems in both artificial intelligence and robotics. Our main result is to design a 1.5-approximation algorithm that runs in polynomial time, improving the currently best approximation algorithm. The idea is direct use of techniques developed for TSP. In addition, we propose a generalization of SPP called the subgroup planning problem (SGPP). In this problem, we are given a set of disjoint groups of vertices, and we aim to find a shortest tour such that all the vertices in each group are traversed sequentially. We propose a 3-approximation algorithm for SGPP. We also conduct numerical experiments. Compared with previous algorithms, our algorithms improve the solution quality by more than 10% for large instances with more than 10,000 vertices.


2007 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Paulo Henrique Siqueira ◽  
Sérgio Scheer ◽  
Maria Teresinha Arns Steiner

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Sign in / Sign up

Export Citation Format

Share Document