Local Nonintegrability of Long—Short Wave Interaction Equations

Author(s):  
A. M. Verbovetsky
Keyword(s):  
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1093-1099
Author(s):  
Mustafa Inc ◽  
Samia Zaki Hassan ◽  
Mahmoud Abdelrahman ◽  
Reem Abdalaziz Alomair ◽  
Yu-Ming Chu

Abstract In this article, the system for the long–short-wave interaction (LS) system is considered. In order to construct some new traveling wave solutions, He’s semi-inverse method is implemented. These solutions may be applicable for some physical environments, such as physics and fluid mechanics. These new solutions show that the proposed method is easy to apply and the proposed technique is a very powerful tool to solve many other nonlinear partial differential equations in applied science.


JETP Letters ◽  
2011 ◽  
Vol 94 (8) ◽  
pp. 610-615 ◽  
Author(s):  
S. V. Sazonov ◽  
N. V. Ustinov

2018 ◽  
Vol 22 ◽  
pp. 01063
Author(s):  
Haci Mehmet Baskonus ◽  
Tukur Abdulkadir Sulaiman ◽  
Hasan Bulut

In this paper, the application of the simplified the extended sinh-Gordon equation expansion method to the long-short-wave interaction system. We successfully construct various solitary wave solutions to this nonlinear complex model. The long-short-wave interaction system describes the interaction between one long longitudinal wave and one short transverse wave propagating in a generalized elastic medium. The 2D and 3D surfaces to some of the obtained solutions are plotted.


2005 ◽  
Vol 60 (4) ◽  
pp. 237-244 ◽  
Author(s):  
M. M. Hassan ◽  
A. H. Khater

Abstract The Jacobi elliptic function solutions of coupled nonlinear partial differential equations, including the coupled modified KdV (mKdV) equations, long-short-wave interaction system and the Davey- Stewartson (DS) equations, are obtained by using the mixed dn-sn method. The solutions obtained in this paper include the single and the combined Jacobi elliptic function solutions. In the limiting case, the solitary wave solutions of the systems are also given. - PACS: 02.30.Jr; 03.40.Kf; 03.65.Fd


2020 ◽  
Vol 7 ◽  
Author(s):  
Haiyong Qin ◽  
Mostafa M. A. Khater ◽  
Raghda A. M. Attia ◽  
Dianchen Lu

2005 ◽  
Vol 127 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Rizwan Sheikh ◽  
Chris Swan

This paper describes new laboratory observations concerning the interaction between a series of steep incident waves and a vertical, surface-piercing, column. The motivation for the study arose as a result of wave impact damage sustained to the undersides of several concrete gravity-based structures in the northern North Sea. Earlier work, [Swan et al. Appl. Ocean. Res. 19, pp. 309–327 (1997)], demonstrated that in the case of multiple column structures, the individual diameters of which lie outside the typical (linear) diffraction regime, there exists a new and previously unexpected mechanism leading to the scattering of high-frequency waves. Although the implications of this effect was carefully documented, not least because it explained the occurrence of wave impacts in relatively moderate seas, its physical origins remained unclear. In particular, it was uncertain whether this type of scattering would be observed in the case of a single column, or whether it results from the transmission of wave modes trapped between the legs of a multiple column structure. In the case of a single column, if the diameter, D, is such that the flow lies within the drag-inertia regime, D/λ<0.2, where λ is the corresponding wavelength, linear diffraction theory suggests there will be little or no scattered wave energy. The present laboratory observations demonstrate that this is not, in fact, the case. If the incident waves are steep, a strong and apparently localized interaction is clearly observed at the water surface. This, in turn, leads to the scattering of high-frequency waves. Although these waves are relatively small in amplitude, their subsequent interaction with other steep incident waves takes the form of a classic long-wave short-wave interaction and can produce a significant increase in the maximum crest elevation relative to those recorded in the absence of the structure. The present paper will demonstrate that the scattering of these high-frequency waves, and their subsequent nonlinear interaction with other incident waves, has significant implications for the specification of an effective air-gap and hence for the setting of deck elevations.


Author(s):  
T. J. O'Hare ◽  
T. E. Baldock ◽  
D. A. Huntley ◽  
P. A. D. Bird ◽  
G. N. Bullock

Sign in / Sign up

Export Citation Format

Share Document