Man’s Impact on Atmosphere and Climate: A Global Threat? Strategies to Combat Global Warming

Author(s):  
G. P. Hekstra
2018 ◽  
Vol 7 (3.12) ◽  
pp. 576
Author(s):  
Harish S ◽  
Karthik S ◽  
Saravana Raja Mohan K

Cement manufacturing industry has been a great contributor to global warming which poses global threat. This novel paper investigates the possibilities of reducing the amount of cement used in a conventional flyash brick by replacing the cement with copper slag in various proportions to make way for substantial construction. Flyash bricks contribute less to global warming compared to chamber bricks, which involves lot of burning. Further substitution of cement with copper slag would significantly reduce its damage potential as copper slag itself is a by-product from copper manufacturing. A conventional flyash brick contains 5% of the entire mix as cement. This paper aims to replace the cement in flyash bricks in successive percentages of the entire mix i.e 1%, 2%, 3%, 4% and 5% with copper slag. The brick samples are then subjected to mechanical tests and durability tests as per IS 3495:1992 and IS 13757:1993. These data of the samples are compared with the normal flyash bricks to find the best proportion. The greatest advantage is the economic factor involved as 1kg of copper slag costs only 16% of that of cement, providing a greater scope for the implementation of this research in reality.


2008 ◽  
Vol 23 (2) ◽  
pp. 101-102 ◽  
Author(s):  
Tareg Bey ◽  
Ernst U von Weizsäcker ◽  
Kristi L Koenig

Global warming has been hotly debated over the last two decades among scientists, economists, legal experts, philosophers, and politicians. Yet, the medical and public health communities are relative newcomers to understanding this global threat to humanity. As we celebrate Earth Day on 22 April 2008, there is an opportunity to educate physicians and other healthcare providers involved in mitigating, preparing for, responding to, and recovering from disasters about the medical and health implications of global warming.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2011 ◽  
Author(s):  
David P. Nalbone ◽  
Amanda Tuohy ◽  
Kelly Jerome ◽  
Jeremy Boss ◽  
Andrew Fentress ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document