copper slag
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 324)

H-INDEX

34
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Reza Tarinejad ◽  
Farshad Moharami ◽  
Mohammad Ali Fadaei ◽  
Mehdi Sanaie ◽  
Hadi Safikhanlou

2022 ◽  
pp. 163751
Author(s):  
Wenbing Xiao ◽  
Shiwen Yao ◽  
Shiwei Zhou ◽  
Yonggang Wei ◽  
Bo Li ◽  
...  
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Tommi Rinne ◽  
Anna Klemettinen ◽  
Lassi Klemettinen ◽  
Ronja Ruismäki ◽  
Hugh O’Brien ◽  
...  

In this study, industrial lithium-ion battery (LIB) waste was treated by a froth flotation process, which allowed selective separation of electrode particles from metallic-rich fractions containing Cu and Al. In the flotation experiments, recovery rates of ~80 and 98.8% for the cathode active elements (Co, Ni, Mn) and graphite were achieved, respectively. The recovered metals from the flotation fraction were subsequently used in high-temperature Cu-slag reduction. In this manner, the possibility of using metallothermic reduction for Cu-slag reduction using Al-wires from LIB waste as the main reductant was studied. The behavior of valuable (Cu, Ni, Co, Li) and hazardous metals (Zn, As, Sb, Pb), as a function of time as well as the influence of Cu-slag-to-spent battery (SB) ratio, were investigated. The results showcase a suitable process to recover copper from spent batteries and industrial Cu-slag. Cu-concentration decreased to approximately 0.3 wt.% after 60 min reduction time in all samples where Cu/Al-rich LIB waste fraction was added. It was also showed that aluminothermic reduction is effective for removing hazardous metals from the slag. The proposed process is also capable of recovering Cu, Co, and Ni from both Cu-slag and LIB waste, resulting in a secondary Cu slag that can be used in various applications.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7735
Author(s):  
Vijayaprabha Chakrawarthi ◽  
Siva Avudaiappan ◽  
Mugahed Amran ◽  
Brindha Dharmar ◽  
Leon Raj Jesuarulraj ◽  
...  

Copper slag (CS) is produced during the smelting process to separate copper from copper ore. The object of the experimental research is to find the optimum percentage of CS and PPF volume fraction when CS replaces fine aggregate, and PPF volume fraction when subjected to impact loading. Copper slag was incorporated as 20%, 40%, 60%, 80% and 100% with PPF of 0.2–0.8% with 0.2% increment. The number of blows on failure of the specimen increases as the fibre volume increases. In addition, the energy absorption of composite concrete is higher than that of ordinary concrete. Concrete with up to 40% CS and 0.6% PPF volume shows a 111.72% increase in the number of blows for failure as compared to the control specimen. The impact resistance at failure was predicted by regression analysis, and very high regression coefficients of 0.93, 0.98 and 0.98 were obtained respectively at 7-, 14- and 28-days curing. In addition to regression analysis, a two-parameter Weibull distribution analysis was used to obtain reliable data on the number of blows at first cracking and eventual failure. The energy absorption at 28-day curing period is 1485.81 Nm which is 284% higher than the control mix. Based on the findings, it can be inferred that adding CS up to 60% densifies the microstructure due to its pozzolanic activity, while polypropylene fibre acts as a micro reinforcement, increasing the number of blows.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7596
Author(s):  
Narayanan Subash ◽  
Siva Avudaiappan ◽  
Somanathan Adish Kumar ◽  
Mugahed Amran ◽  
Nikolai Vatin ◽  
...  

The aim of this research was to find the best alternative for river sand in concrete. In both geopolymer concrete (GPC) and cement concrete (CC), the fine aggregates are replaced with various sustainable mineral ashes, and mechanical and durability tests are conducted. Specimens for tests were made of M40 grade GPC and CC, with five different soil types as river sand substitute. The materials chosen to replace the river sand are manufactured sand (M-sand), sea sand, copper slag, quarry dust, and limestone sand as 25%, 50%, 75%, and 100%, respectively by weight. GPF50 and CC50 were kept as control mixes for GPC and CC, respectively. The test results of respective concretes are compared with the control mix results. From compressive strength results, M-sand as a fine aggregate had an increase in strength in every replacement level of GPC and CC. Additionally, copper slag is identified with a significant strength reduction in GPC and CC after 25% replacement. Copper slag, quarry dust, and limestone sand in GPC and CC resulted in considerable loss of strength in all replacement levels except for 25% replacement. The cost of GPC and CC is mixed with the selected fine aggregate replacement materials which arrived. Durability and cost analyses are performed for the advisable mixes and control mixes to have a comparison. Durability tests, namely, water absorption and acid tests and water permeability and thermal tests are conducted and discussed. Durability results also indicate a positive signal to mixes with M-sand. The advisable replacement of river sand with each alternative is discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zongliang Zuo ◽  
Yan Feng ◽  
Siyi Luo ◽  
Xinjiang Dong ◽  
Xiaoteng Li ◽  
...  

Copper slag is a solid pollutant with high recyclability. Reduction and separation are regarded as effective disposal methods. However, during the melting process, the separation and migration behavior of elements in the copper slag is complicated. Thus, the formation of pollutants cannot be controlled merely by optimizing the operation parameters. The elemental distribution and migration behavior are discussed in this work. In reduction experiments, the copper slag smelting liquid was divided into three layers: a reduction slag layer, a reactive boundary layer, and an iron ingot layer. Reduction slag and ingot iron were on the top and bottom of the liquid, respectively. Residual carbon oozed at the interface. C can react with reducible “O” atoms, which exist in 2FeO·SiO2, Fe3O4, and CuO. Meanwhile, CO was generated and overflowed from the liquid layer. After reduction by C or CO, metallic iron and copper were produced and migrated to the iron ingot layer. In the liquid, S gradually diffused into the upper layer. Some of the ZnO and CuS spilled from the liquid into the flume. After reduction, CaO·SiO2 was generated and moved to the upper layer.


Sign in / Sign up

Export Citation Format

Share Document