The Path-Integral Simulation of Quantum Systems

Author(s):  
M. J. Gillan
2002 ◽  
Vol 352 (1-2) ◽  
pp. 63-69 ◽  
Author(s):  
Sheikh Hannan Mandal ◽  
Rathindranath Ghosh ◽  
Goutam Sanyal ◽  
Debashis Mukherjee

Author(s):  
Edward Witten

Recently, it has been found that Jackiw-Teitelboim (JT) gravity, which is a two-dimensional theory with bulk action − 1 / 2 ∫ d 2 x g ϕ ( R + 2 ) , is dual to a matrix model, that is, a random ensemble of quantum systems rather than a specific quantum mechanical system. In this article, we argue that a deformation of JT gravity with bulk action − 1 / 2 ∫ d 2 x g ( ϕ R + W ( ϕ ) ) is likewise dual to a matrix model. With a specific procedure for defining the path integral of the theory, we determine the density of eigenvalues of the dual matrix model. There is a simple answer if W (0) = 0, and otherwise a rather complicated answer.


In this chapter, basic quantum tools such as time-evolution operators, transition rates and amplitudes, statistical and projector operators, and interaction and density matrix representations are employed to characterize the open and interacting quantum systems with the aid of Schrödinger, quantum master, Fokker-Planck, and Feynman path integral equations and formulations.


Sign in / Sign up

Export Citation Format

Share Document