exact renormalization group
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 16)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Tuncer Kaya

In this work, an exact renormalization group treatment of honeycomb lattice leading to an exact relation between the coupling strengths of the honeycomb and the triangular lattices is presented. Using the honeycomb and the triangular duality relation, the critical coupling values of honeycomb and triangular lattices are calculated exactly by the simultaneous solution of the renormalized relation and the duality relation, without using the so-called star-triangular transformation. Apparently, the obtained coupling relation is unique. It not only takes place the role of the star triangular relation, but it is also the only exact relation obtained from renormalization group theory other than the 1D Ising chain. An exact pair correlation function expression relating the nearest neighbors and the next nearest neighbor correlation functions are also obtained for the honeycomb lattice. Utilizing this correlation relation, an exact expression of the correlation length of the honeycomb lattice is calculated analytically for the coupling constant values less than the critical value in the realm of the scaling theory. The critical exponents [Formula: see text] and [Formula: see text] are also calculated as [Formula: see text] and [Formula: see text].


Author(s):  
H. Sonoda

We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in [Formula: see text] dimensions. This amounts to perturbative construction of the [Formula: see text] theory where the parameters of the theory are momentum-dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.


Author(s):  
Hidenori Sonoda ◽  
Hiroshi Suzuki

Abstract The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilson action in the exact renormalization group (ERG) formalism. By imitating the structure of this connection, we propose an ERG differential equation that preserves manifest gauge invariance in Yang{Mills theory. Our construction in continuum theory can be extended to lattice gauge theory.


Author(s):  
Masami Matsumoto ◽  
Gota Tanaka ◽  
Asato Tsuchiya

Abstract We study relationship between renormalization group and diffusion equation. We consider the exact renormalization group equation for a scalar field that includes an arbitrary cutoff function and an arbitrary quadratic seed action. As a generalization of the result obtained by Sonoda and Suzuki, we find that the correlation functions of diffused fields with respect to the bare action agree with those of bare fields with respect to the effective action, where the diffused field obeys a generalized diffusion equation determined by the cutoff function and the seed action and agrees with the bare field at the initial time.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
István A. Kovács ◽  
Róbert Juhász

AbstractPercolation theory dictates an intuitive picture depicting correlated regions in complex systems as densely connected clusters. While this picture might be adequate at small scales and apart from criticality, we show that highly correlated sites in complex systems can be inherently disconnected. This finding indicates a counter-intuitive organization of dynamical correlations, where functional similarity decouples from physical connectivity. We illustrate the phenomenon on the example of the disordered contact process (DCP) of infection spreading in heterogeneous systems. We apply numerical simulations and an asymptotically exact renormalization group technique (SDRG) in 1, 2 and 3 dimensional systems as well as in two-dimensional lattices with long-ranged interactions. We conclude that the critical dynamics is well captured by mostly one, highly correlated, but spatially disconnected cluster. Our findings indicate that at criticality the relevant, simultaneously infected sites typically do not directly interact with each other. Due to the similarity of the SDRG equations, our results hold also for the critical behavior of the disordered quantum Ising model, leading to quantum correlated, yet spatially disconnected, magnetic domains.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
H. Sonoda

Abstract Given a Wilson action invariant under global chiral transformations, we can construct current composite operators in terms of the Wilson action. The short-distance singularities in the multiple products of the current operators are taken care of by the exact renormalization group. The Ward–Takahashi identity is compatible with the finite momentum cutoff of the Wilson action. The exact renormalization group and the Ward–Takahashi identity together determine the products. As a concrete example, we study the Gaussian fixed-point Wilson action of the chiral fermions to construct the products of current operators.


2020 ◽  
Vol 35 (04) ◽  
pp. 2050016
Author(s):  
R. Moti ◽  
A. Shojai

Deriving the gravitational effective action directly from exact renormalization group is very complicated, if not impossible. Hence, to study the effects of running gravitational coupling which tends to a non-Gaussian UV fixed point (as it is supposed by the asymptotic safety conjecture), two steps are usually adopted. Cutoff identification and improvement of the gravitational coupling to the running one. As suggested in Ref. 1, a function of all independent curvature invariants seems to be the best choice for cutoff identification of gravitational quantum fluctuations in curved space–time and makes the action improvement, which saves the general covariance of theory, possible. Here, we choose Ricci tensor square for this purpose and then the equation of motion of improved gravitational action and its spherically symmetric vacuum solution are obtained. Indeed, its effect on the massive particles’ trajectory and the black hole thermodynamics is studied.


Sign in / Sign up

Export Citation Format

Share Document