Natural Analogues of Radionuclide Migration in Sediments in Britain

Author(s):  
P. J. Hooker ◽  
N. A. Chapman ◽  
A. B. MacKenzie ◽  
R. D. Scott ◽  
M. Ivanovich
Author(s):  
S. G. Skublov ◽  
A. O. Krasotkina ◽  
A. B. Makeyev ◽  
O. L. Galankina ◽  
A. E. Melnik

Findings of the growth relationships between baddeleyite and zircon are rare, due to significant differences in the formation conditions of the minerals. A reaction replacement (partial to complete) of baddeleyite by zircon is possible during metamorphism accompanied by the interaction with high-Si fluids. The opposite situation, when zircon is replaced by baddeleyite, is extremely rare in the nature. Transformation of zircon from polymineral (compound) ore occurrence Ichetju (the Middle Timan) with the formation of microaggregates of baddeleyite, ratile and florencite has been found out. The size of the largest segregations of baddeleyite does not exceed 10 microns in diameter. Microaggregates are unevenly related to the rim of zircon with a thickness of 10 to 50 rfn, voids and cracks across the grain. Altered zircon rim (a mixture of newly formed minerals) is characterized by sharply increased composition of REE (especially LREE), Y, Nb, Ca, Ti. The composition of Th and U also increases. An overview of the experimental studies on the reaction between zircon and baddeleyite and single natural analogues allows to make a conclusion that the most likely mechanism of the transformation of zircon from ore occurrence Ichetju to baddeleyite (intergrowth with ratile and florencite) is due to the effect of interaction of primary zircon with high-temperature (higher than 500—600°C) alkaline fluids transporting HFSE (REE, Y, Nb, Ti). This is indirectly confirmed by the findings of zircon with anomalous high composition of Y and REE up to 100000 and 70000 ppm respectively.


On the grey forest medium-loamy soil of Vladimir Opolye region we have studied the impact of various methods of basic cultivation and fertilizer systems on the activity of redox and hydrolytic enzymes: ure-ase (nitrogen cycle), invertase (carbon cycle), phosphatase (phosphorus cycle), and catalase, involved in the cycle of carbon in the soil. The second humus horizon with capacity of 19-24cm was found at the depth of 20 - 21 cm on the experimental field. We have studied three modes of basic soil cultivation: an-nual shallow flat plowing (6-8 cm), annual deep flat plowing (20-22 cm), and annual moldboard plowing (20-22 cm) with normal and intensive application of fertilizers. The most enzymatically active layer is 0-20 cm. No relevant difference has been found in the level of enzymes activity between variants of basic soil treatment. Activity of enzymes increases with application of fertilizers on the intensive background. In agrogenic soils, soil enzymatic activity is lower on average by 16-22% compared to the soil of the res-ervoir. The biggest negative transformation of activity has been observed at the urease enzyme (up to 50%). With annual moldboard plowing on the intensive backgroung, enzyme activity has been close to the natural level – 98.4%. Catalise and invertase activity in this case were found to be higher (105 and 116% respectively) than that of natural analogues. Activity of enzymes increases with intensive application of fertilizers as compared with normal background. This is particularly evident with 6-8cm deep beardless plowing and 20-22cm deep moldboard plowing. In general, the obtained biochemical indicators charac-terize the highest environmental sustainability of this variation within our research.


2018 ◽  
Author(s):  
Funing Ma ◽  
◽  
Zhenxue Dai ◽  
Chaomei Wang ◽  
Mohamad Reza Soltanian

1992 ◽  
Vol 294 ◽  
Author(s):  
Ivars Neretnieks

ABSTRACTIn repositories for nuclear waste there are many processes that will be instrumental in damaging the canisters and releasing the nuclides. Based on experiences from studies of the performance of repositories and of an actual design, the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix, as well as in the mobile water, is an important transport process, but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include alpha-radiolysis, which may change the water chemistry in the near-field. The sizes and locations of water flowpaths and damages in the canisters considerably influence the release rates. Uncertainties in data are large. Nevertheless the system is very robust in the sense that practically no reasonably conceivable assumptions or data will lead to large nuclide releases. Several natural analogues have been found to exhibit similarities with a waste repository and help to validate concepts and to increase our confidence that all major issues have been considered.


Sign in / Sign up

Export Citation Format

Share Document