The Effect of pH and Flash Frequency on Electron Transfer Through the Quinone Acceptor Complex of Ps II in Bicarbonate Depleted or Anion Inhibited Thylakoid Membranes

Author(s):  
Julian J. Eaton-Rye ◽  
Govindjee
1990 ◽  
Vol 45 (3-4) ◽  
pp. 258-264
Author(s):  
Jeff A. Nemson ◽  
Anastasios Melis

Abstract Illumination of thylakoid membranes in the presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea (DCMU) causes the reduction of the primary quinone acceptor QA of photosystem II (PS II) and the storage of a positive charge on the donor side of the photochemical reaction center. These oxidation-reduction reactions are accompanied by characteristic changes of absorbance in the ultra-violet region of the spectrum. The PS II-related absorbance difference spectra (250 -350 nm) were compared in control and hydroxylamine-treated thylakoid membranes, and in thylakoids suspended in the presence of carbonyl cyanide-p-(trifluoromethoxy)- phenylhydrazone (FCCP). The light minus dark difference spectra were dominated by the Q-A minus QA difference spectrum. Qualitatively, the three spectra were identical in the 300 - 350 nm region, however, they showed distinct differences in the 250 - 300 nm region. The latter arose because of different contributions from the donor side of PS II in the thylakoid membrane of the three samples. The result suggested that FCCP acts as the ultimate electron donor in DCMU - poisoned chloroplasts. Therefore, the absorbance difference spectrum in the presence of FCCP reflected a contribution from the Q-A minus QA component only. Deconvolution of the absorbance difference spectra of control and hydroxylamine-treated thylakoids yielded difference spectra attributed to the oxidation of a component on the donor side of PS II. This component did not conform with the known Mn(III) → Mn(IV) transition. Rather, it indicated the oxidation of a modified form of Mn in the presence of DCMU , probably a Mn(II) → Mn(III) transition. The results are discussed in terms of the use of DCMU - poisoned thylakoid membranes in the quantitation of the primary quinone acceptor QA by spectrophotometric approaches.


Life ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 55
Author(s):  
Adrien Thurotte ◽  
Tobias Seidel ◽  
Ruven Jilly ◽  
Uwe Kahmann ◽  
Dirk Schneider

DnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in the cyanobacterium Synechocystis sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid membranes and to photosynthetic processes. In a DnaK3 depleted strain, the photosystem content is reduced and the photosystem II activity is impaired, whereas photosystem I is regular active. An impact of DnaK3 on the activity of other thylakoid membrane complexes involved in electron transfer is indicated. In conclusion, DnaK3 is a versatile chaperone required for biogenesis and/or maintenance of thylakoid membrane-localized protein complexes involved in electron transfer reactions. As mentioned above, Hsp70 proteins are involved in photoprotection and repair of PS II in chloroplasts.


1993 ◽  
Vol 48 (3-4) ◽  
pp. 163-167
Author(s):  
Koichi Yoneyama ◽  
Yoshihiro Nakajima ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
...  

Abstract Through the studies on structure-activity relationships of 5-acyl-3-(1-aminoalkylidene)-4-hydroxy-2 H-pyran-2,6(3 H)-dione derivatives in photosystem II (PS II) inhibition, overall lipophilicity of the molecule was found to be a major determinant for the activity. In the substituted N -benzyl derivatives, not only the lipophilicity but also the electronic and steric characters of the substituents greatly affected the activity. Their mode of PS II inhibition seemed to be similar to that of DCMU , whereas pyran-enamine derivatives needed to be highly lipophilic to block the electron transport in thylakoid membranes, which in turn diminished the permeability through biomembranes.


Author(s):  
Jörg Pieper ◽  
Leonid Rusevich ◽  
Thomas Hauß ◽  
Gernot Renger

AbstractThe effect of dehydration on the lamellar spacing of photosystem II (PS II) membrane fragments from spinach has been investigated using neutron membrane diffraction at room temperature. The diffraction data reveal a major peak at a scattering vector Q of 0.049 Å−1 at a relative humidity (r.h.) of 90% corresponding to a repeat distance D of about 129 Å. Upon dehydration to 44% r.h., this peak shifts to about 0.060 Å−1 corresponding to a distance of 104.7±2.5 Å. Within experimental error, the latter repeat distance remains almost the same at hydration levels below 44% r.h. indicating that most of the hydration water is removed. This result is consistent with the earlier finding that hydration-induced conformational protein motions in PS II membrane fragments are observed above 44% r.h. and correlated with the onset electron transfer in PS II (Pieper et al. 2008, Eur. Biophys. J. 37: 657–663).


Sign in / Sign up

Export Citation Format

Share Document