dimethyl urea
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Neeli Satyanarayana ◽  
Kota Sathish ◽  
Sakkani Nagaraju ◽  
Ravinder Pawar ◽  
Mohammad Faizan ◽  
...  

A simple, metal-free protocol is reported for the one-pot synthesis of 2-styrylquinolines using a combination of 1,3-dimethyl urea (1,3-DMU) and L-tartaric acid (LTA) (in 3:1 ratio) as deep eutectic solvent...


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 513
Author(s):  
Anaïs Surribas ◽  
Lise Barthelmebs ◽  
Thierry Noguer

Chlortoluron (3-(3-chloro-p-tolyl)-1,1-dimethyl urea) is an herbicide widely used in substitution to isoproturon to control grass weed in wheat and barley crops. Chlortoluron has been detected in groundwaters for more than 20 years; and dramatic increases in concentrations are observed after intense rain outbreaks. In this context; we developed an immunosensor for the determination of chlortoluron based on competitive binding of specific monoclonal antibodies on chlortoluron and immobilized biotinylated chlortoluron; followed by electrochemical detection on screen-printed carbon electrodes. The optimized immunosensor exhibited a logarithmic response in the range 0.01–10 µg·L−1; with a calculated detection limit (LOD) of 22.4 ng·L−1; which is below the maximum levels allowed by the legislation (0.1 µg·L−1). The immunosensor was used for the determination of chlortoluron in natural groundwaters, showing the absence of matrix effects.


2021 ◽  
Author(s):  
Rashid Ali

After the first report of deep eutectic mixtures by the team of Abbott in 2003, the advent of green synthesis has been progressively changing the way synthetic chemistry is thought and also taught. Since then, a plethora of efforts worldwide have been taken to stretch the ideas of sustainable as well as environmentally benign approaches to do the crucial synthetic organic transformations under operationally simple yet effective conditions. Although, till date, several green synthetic strategies for examples ultrasound, microwaves, flow as well as grindstone chemistry etc., and green reaction media (e.g. ionic liquid, water, scCO2, and so forth) have successfully been invented. But a low melting mixture of L-(+)-tartaric acid (TA) and N,N′-dimethylurea (DMU), usually plays a double and/or triple role (solvent, catalyst, and/or reagent), though still infancy but enjoys several eye-catching properties like biodegradability, recyclability, non-toxicity, good thermal stability, tunable physiochemical properties, low vapor pressure as well as reasonable prices in addition to the easy preparation with wide functional groups tolerance. To this context, keeping the importance of this novel low melting mixture in mind, we intended to reveal the advancements taken place in this wonderful area of research since its first report by the Köenig’s group in 2011 to till date. In this particular chapter, firstly we would disclose the importance of the green synthesis followed by a brief description of deep-eutectic solvents (DESs) particularly emphasizing on the role of L-(+)-TA and DMU from modern synthetic chemistry perspective.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Hafsa Afzal ◽  
Nasir Abbas ◽  
Amjad Hussain ◽  
Sumera Latif ◽  
Kanwal Fatima ◽  
...  

2021 ◽  
Vol 25 ◽  
Author(s):  
Rashid Ali ◽  
Ajay Kumar Chinnam ◽  
Vikas R. Aswar

: The deep eutectic mixtures (DESs), introduced as novel alternative to usual volatile organic solvents for organic transformations has attracted a tremendous attention of the research community because of their low cost, negligible vapour pressure, low toxicity, biodegradability, recyclability, insensitive towards moisture, and readily availability from bulk renewable resources. Although, the low melting mixture of dimethyl urea (DMU)/L-(+)-tartaric acid (TA) is still infancy yet much effective as it play double and triple roles such as solvent, catalyst and/or reagent in a same pot for many crucial organic transformations. These unique properties of DMU/TA mixture prompted us to provide a quick overview of where the field stands presently, and where it might be going in near future. To our best knowledge, no review dealing with the applications of a low melting mixture of DMU/TA appeared in the literature except the one published in 2017 describing only the chemistry of indole systems. Therefore, we intended to reveal the developments of this versatile low melting mixture in the modern organic synthesis since its first report in 2011 by Köenig’s team to till date. Hopefully, the present review article will be useful to the researcher working not only in the arena of synthetic organic chemistry but also to the scientists working in other branches of science and technology.


2020 ◽  
Vol 15 (2) ◽  
pp. 155-164
Author(s):  
Manish Kumar Tripathi ◽  
Mohammad Yasir ◽  
Pushpendra Singh ◽  
Rahul Shrivastava

Background: The lungs are directly exposed to pollutants, pathogens, allergens, and chemicals, which might lead to physiological disorders. During the Bhopal gas disaster, the lungs of the victims were exposed to various chemicals. Here, using molecular modelling studies, we describe the effects of these chemicals (Dimethyl urea, Trimethyl urea, Trimethyl isocyanurate, Alphanaphthol, Butylated hydroxytoluene and Carbaryl) on pulmonary immune proteins. Objective: In the current study, we performed molecular modelling methods like molecular docking and molecular dynamics simulation studies to identify the effects of hydrolytic products of MIC and dumped residues on the pulmonary immune proteins. Methods: Molecular docking studies of (Dimethyl urea, Trimethyl urea, Trimethyl isocyanurate, Alphanaphthol, Butylated hydroxytoluene and Carbaryl) on pulmonary immune proteins was performed using the Autodock 4.0 tool, and gromacs was used for the molecular dynamics simulation studies to get an insight into the possible mode of protein-ligand interactions. Further, in silico ADMET studies was performed using the TOPKAT protocol of discovery studio. Results: From docking studies, we found that surfactant protein-D is inhibited most by the chemicals alphanaphthol (dock score, -5.41Kcal/mole), butylated hydroxytoluene (dock score,-6.86 Kcal/mole), and carbaryl (dock score,-6.1 Kcal/mole). To test their stability, the obtained dock poses were placed in a lipid bilayer model system mimicking the pulmonary surface. Molecular dynamics simulations suggest a stable interaction between surfactant protein-D and carbaryl. Conclusion: This, study concludes that functioning of surfactant protein-D is directly or indirectly affected by the carbaryl chemical, which might account for the increased susceptibility of Bhopal gas disaster survivors to pulmonary tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document