scholarly journals Lamellar spacing of photosystem II membrane fragments upon dehydration studied by neutron membrane diffraction

Author(s):  
Jörg Pieper ◽  
Leonid Rusevich ◽  
Thomas Hauß ◽  
Gernot Renger

AbstractThe effect of dehydration on the lamellar spacing of photosystem II (PS II) membrane fragments from spinach has been investigated using neutron membrane diffraction at room temperature. The diffraction data reveal a major peak at a scattering vector Q of 0.049 Å−1 at a relative humidity (r.h.) of 90% corresponding to a repeat distance D of about 129 Å. Upon dehydration to 44% r.h., this peak shifts to about 0.060 Å−1 corresponding to a distance of 104.7±2.5 Å. Within experimental error, the latter repeat distance remains almost the same at hydration levels below 44% r.h. indicating that most of the hydration water is removed. This result is consistent with the earlier finding that hydration-induced conformational protein motions in PS II membrane fragments are observed above 44% r.h. and correlated with the onset electron transfer in PS II (Pieper et al. 2008, Eur. Biophys. J. 37: 657–663).

2021 ◽  
Author(s):  
Mateusz Reczyński ◽  
Dawid Pinkowicz ◽  
Koji Nakabayashi ◽  
Christian Näther ◽  
Jan Stanek ◽  
...  

1993 ◽  
Vol 48 (3-4) ◽  
pp. 163-167
Author(s):  
Koichi Yoneyama ◽  
Yoshihiro Nakajima ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
...  

Abstract Through the studies on structure-activity relationships of 5-acyl-3-(1-aminoalkylidene)-4-hydroxy-2 H-pyran-2,6(3 H)-dione derivatives in photosystem II (PS II) inhibition, overall lipophilicity of the molecule was found to be a major determinant for the activity. In the substituted N -benzyl derivatives, not only the lipophilicity but also the electronic and steric characters of the substituents greatly affected the activity. Their mode of PS II inhibition seemed to be similar to that of DCMU , whereas pyran-enamine derivatives needed to be highly lipophilic to block the electron transport in thylakoid membranes, which in turn diminished the permeability through biomembranes.


Author(s):  
Mateusz Reczyński ◽  
Dawid Pinkowicz ◽  
Koji Nakabayashi ◽  
Christian Näther ◽  
Jan Stanek ◽  
...  

BIOPHYSICS ◽  
2007 ◽  
Vol 52 (1) ◽  
pp. 40-45 ◽  
Author(s):  
I. B. Klenina ◽  
W. O. Feikema ◽  
P. Gast ◽  
M. G. Zvereva ◽  
I. I. Proskuryakov

1969 ◽  
Vol 24 (10) ◽  
pp. 1502-1511
Author(s):  
Karl Heinzinger

Abstract There are two kinds of water in CuSO4·5H2O differing by their binding in the crystal. The oxygen of four water molecules is bonded to the copper ion, that of the fifth molecule is hydrogen bonded. It is shown that the D/H ratios of these two kinds of water differ by 5.7%, the light isotope being enriched in the water molecules coordinated with the copper ion. The results show that there is no exchange of the hydrogen isotopes during the time needed for dehydration at room temperature which takes several days. The assumption has been confirmed that the water coordinated with the copper ion leaves the crystal first on dehydration at temperatures below 50 °C. Additional measurements of the separation factor for the hydrogen isotopes between water vapor and copper sulfate solutions allow conclusions on the fractionation of the hydrogen isotopes between bulk water and hydration water in aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document