Transience in a Queueing System with a Finite Number of Locally Interacting Servers

Author(s):  
Michel Blais
1967 ◽  
Vol 4 (02) ◽  
pp. 365-379 ◽  
Author(s):  
Erhan Çinlar

A queueing system with a single server is considered. There are a finite number of types of customers, and the types of successive arrivals form a Markov chain. Further, the nth interarrival time has a distribution function which may depend on the types of the nth and the n–1th arrivals. The queue size, waiting time, and busy period processes are investigated. Both transient and limiting results are given.


2007 ◽  
Vol 39 (04) ◽  
pp. 898-921 ◽  
Author(s):  
Idriss Maoui ◽  
Hayriye Ayhan ◽  
Robert D. Foley

We study a service facility modeled as a queueing system with finite or infinite capacity. Arriving customers enter if there is room in the facility and if they are willing to pay the price posted by the service provider. Customers belong to one of a finite number of classes that have different willingnesses-to-pay. Moreover, there is a penalty for congestion in the facility in the form of state-dependent holding costs. The service provider may advertise class-specific prices that may fluctuate over time. We show the existence of a unique optimal stationary pricing policy in a continuous and unbounded action space that maximizes the long-run average profit per unit time. We determine an expression for this policy under certain conditions. We also analyze the structure and the properties of this policy.


1967 ◽  
Vol 4 (02) ◽  
pp. 356-364 ◽  
Author(s):  
Erhan Çinlar

A single server queueing system with Poisson input is considered. There are a finite number of types of customers and the service time of the nth customers depends on the types of the nth and the (n – l)th customers. The time dependence of the queue size process will be studied, (it will be clear how the methods of the paper can be applied to other processes of interest,) and limiting as well as transient results will be given.


1967 ◽  
Vol 4 (2) ◽  
pp. 356-364 ◽  
Author(s):  
Erhan Çinlar

A single server queueing system with Poisson input is considered. There are a finite number of types of customers and the service time of the nth customers depends on the types of the nth and the (n – l)th customers. The time dependence of the queue size process will be studied, (it will be clear how the methods of the paper can be applied to other processes of interest,) and limiting as well as transient results will be given.


Cybernetics ◽  
1974 ◽  
Vol 8 (3) ◽  
pp. 465-470 ◽  
Author(s):  
A. M. Andronov

1967 ◽  
Vol 4 (2) ◽  
pp. 365-379 ◽  
Author(s):  
Erhan Çinlar

A queueing system with a single server is considered. There are a finite number of types of customers, and the types of successive arrivals form a Markov chain. Further, the nth interarrival time has a distribution function which may depend on the types of the nth and the n–1th arrivals. The queue size, waiting time, and busy period processes are investigated. Both transient and limiting results are given.


2007 ◽  
Vol 39 (4) ◽  
pp. 898-921 ◽  
Author(s):  
Idriss Maoui ◽  
Hayriye Ayhan ◽  
Robert D. Foley

We study a service facility modeled as a queueing system with finite or infinite capacity. Arriving customers enter if there is room in the facility and if they are willing to pay the price posted by the service provider. Customers belong to one of a finite number of classes that have different willingnesses-to-pay. Moreover, there is a penalty for congestion in the facility in the form of state-dependent holding costs. The service provider may advertise class-specific prices that may fluctuate over time. We show the existence of a unique optimal stationary pricing policy in a continuous and unbounded action space that maximizes the long-run average profit per unit time. We determine an expression for this policy under certain conditions. We also analyze the structure and the properties of this policy.


Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


Sign in / Sign up

Export Citation Format

Share Document