Large Amplitude Forced Vibration Response of Laminated Composite Rectangular Plates by a Finite Element Method

1985 ◽  
pp. 703-716 ◽  
Author(s):  
Kenneth R. Wentz ◽  
Chuh Mei ◽  
C. K. Chiang
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Trung Thanh Tran ◽  
Van Ke Tran ◽  
Pham Binh Le ◽  
Van Minh Phung ◽  
Van Thom Do ◽  
...  

This paper carries out forced vibration analysis of graphene nanoplatelet-reinforced composite laminated shells in thermal environments by employing the finite element method (FEM). Material properties including elastic modulus, specific gravity, and Poisson’s ratio are determined according to the Halpin–Tsai model. The first-order shear deformation theory (FSDT), which is based on the 8-node isoparametric element to establish the oscillation equation of shell structure, is employed in this work. We then code the computing program in the MATLAB application and examine the verification of convergence rate and reliability of the program by comparing the data of present work with those of other exact solutions. The effects of both geometric parameters and mechanical properties of materials on the forced vibration of the structure are investigated.


Author(s):  
Jingming Chen ◽  
Paolo Pennacchi ◽  
Dongxiang Jiang ◽  
Steven Chatterton

In the rotating machineries, large vibrations of a blade would result in fatigue crack, which is a great threaten to the safety. Therefore, it is of great importance to reduce the blade vibrations. Snubbing technique is a possible solution to this problem. A tiny gap is left between the shrouds of adjacent blades. While the forced vibration makes the relative displacement between two neighboring blades exceed the gap, the contact happens at the contact face of the shrouds, accompanied with friction and energy dissipation, which restricts the vibration. In this paper, a simplified model for a set of rotor blades is established, by using finite element method. The contact between the adjacent shrouds is considered. In this way, snubbing phenomenon can occur under forced vibration. Based on the model, modal analysis has been conducted. The 8x rev. frequency has been chosen as the excitation frequency. Under a certain amplitude of sine excitation, the circumferential vibration of the blades has been simulated. The vibration has been analyzed in the time domain. As expected, the blade motion is divided into four different states in one period. They are: non-contact, rebounding, sticky and escaping state. The four states had different mechanical and motion characteristics. The motion pattern for the set of blades has been also analyzed and the wave spreading along the bladerow has been described. Because of the snubbing mechanism, the waveform was distorted into serrated shape.


AIAA Journal ◽  
1985 ◽  
Vol 23 (7) ◽  
pp. 1104-1110 ◽  
Author(s):  
Chuh Mei ◽  
Kamolphan Decha-Umphai

Sign in / Sign up

Export Citation Format

Share Document