Some Distributions in the Theory of Graphs

Author(s):  
Michael Capobianco
Keyword(s):  

Nowadays, marketing specialists simultaneously use several channels to attract visitors to websites. There is a difficulty in assessing not only the efficiency and conversion of each channel separately, but also in their interconnection. The problem occurs when users visit a website from several sources and only after that do the key action. To assess the effectiveness and selection of the most optimal channels, different models of attribution are used. The models are reviewed in the article. However, we propose to use multi-channel attribution, which provides an aggregate assessment of multi-channel sequences, taking into account that they are interdependent. The purpose of the paper is to create an attribution model that comprehensively evaluates multi-channel sequences and shows the effect of each channel on the conversion. The presented model of attribution can be based on the theory of graphs or Markov chains. The first method of calculation is more visual, the second (based on Markov chains) allows for work with a large amount of data. As a result, a model of multi-channel attribution was presented, which is based on Markov processes or graph theory. It allows for maximum comprehensive assessing of the impact of each channel on the conversion. On the basis of the two methods, calculations were carried out, confirming the adequacy of the model used for the tasks assigned.


1977 ◽  
pp. 143-216
Author(s):  
Horst A. Eiselt ◽  
Helmut von Frajer
Keyword(s):  

Author(s):  
Jack E. Graver ◽  
Mark E. Watkins
Keyword(s):  

Author(s):  
Jyoti Shetty ◽  
G. Sudhakara

A semigraph, defined as a generalization of graph by  Sampathkumar, allows an edge to have more than two vertices. The idea of multiple vertices on edges gives rise to multiplicity in every concept in the theory of graphs when generalized to semigraphs. In this paper, we define a representing matrix of a semigraph [Formula: see text] and call it binomial incidence matrix of the semigraph [Formula: see text]. This matrix, which becomes the well-known incidence matrix when the semigraph is a graph, represents the semigraph uniquely, up to isomorphism. We characterize this matrix and derive some results on the rank of the matrix. We also show that a matrix derived from the binomial incidence matrix satisfies a result in graph theory which relates incidence matrix of a graph and adjacency matrix of its line graph. We extend the concept of “twin vertices” in the theory of graphs to semigraph theory, and characterize them. Finally, we derive a systematic approach to show that the binomial incidence matrix of any semigraph on [Formula: see text] vertices can be obtained from the incidence matrix of the complete graph [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document