Tissue-Engineered Vascular Grafts for Small-Diameter Arterial Replacement

Author(s):  
M. J. B. Wissink ◽  
J. Feijen
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1952
Author(s):  
Max Wacker ◽  
Jan Riedel ◽  
Heike Walles ◽  
Maximilian Scherner ◽  
George Awad ◽  
...  

In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 1388-1401
Author(s):  
Megan Kimicata ◽  
Prateek Swamykumar ◽  
John P. Fisher

2006 ◽  
Vol 54 (2) ◽  
pp. 102-107 ◽  
Author(s):  
H. Gulbins ◽  
A. Pritisanac ◽  
M. Dauner ◽  
R. Petzold ◽  
A. Goldemund ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


2003 ◽  
Vol 30 (4) ◽  
pp. 507-517 ◽  
Author(s):  
Rachael H Schmedlen ◽  
Wafa M Elbjeirami ◽  
Andrea S Gobin ◽  
Jennifer L West

Cytotherapy ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. S41-S42
Author(s):  
S. Perez Lopez ◽  
M. Navarro Rego ◽  
M. Álvarez Viejo ◽  
M. Perez Basterrechea ◽  
J. Cenis Anadon ◽  
...  

Author(s):  
Yuen Ting Lam ◽  
Richard P. Tan ◽  
Praveesuda L. Michael ◽  
Kieran Lau ◽  
Nianji Yang ◽  
...  

The rising incidence of cardiovascular disease has increased the demand for small diameter (<6 mm) synthetic vascular grafts for use in bypass surgery. Clinically available synthetic grafts (polyethylene terephthalate and expanded polytetrafluorethylene) are incredibly strong, but also highly hydrophobic and inelastic, leading to high rates of failure when used for small diameter bypass. The poor clinical outcomes of commercial synthetic grafts in this setting have driven significant research in search of new materials that retain favourable mechanical properties but offer improved biocompatibility. Over the last several decades, silk fibroin derived from Bombyx mori silkworms has emerged as a promising biomaterial for use in vascular applications. Progress has been driven by advances in silk manufacturing practices which have allowed unprecedented control over silk strength, architecture, and the ensuing biological response. Silk can now be manufactured to mimic the mechanical properties of native arteries, rapidly recover the native endothelial cell layer lining vessels, and direct positive vascular remodelling through the regulation of local inflammatory responses. This review summarises the advances in silk purification, processing and functionalisation which have allowed the production of robust vascular grafts with promise for future clinical application.


2007 ◽  
Vol 31 (4) ◽  
pp. 682-689 ◽  
Author(s):  
Xinwen Wang ◽  
Peter Lin ◽  
Qizhi Yao ◽  
Changyi Chen

Sign in / Sign up

Export Citation Format

Share Document