vascular grafts
Recently Published Documents


TOTAL DOCUMENTS

1532
(FIVE YEARS 314)

H-INDEX

78
(FIVE YEARS 12)

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Kevin M. Blum ◽  
Jacob C. Zbinden ◽  
Abhay B. Ramachandra ◽  
Stephanie E. Lindsey ◽  
Jason M. Szafron ◽  
...  

Abstract Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.


2021 ◽  
Author(s):  
Kutay Saglam ◽  
Tevfik Tolga Sahin ◽  
Sertac Usta ◽  
Cemalettin Koc ◽  
Emrah Otan ◽  
...  

Author(s):  
Qianheng Jin ◽  
Guangzhe Jin ◽  
Jihui Ju ◽  
Lei Xu ◽  
Linfeng Tang ◽  
...  

Three-dimensional (3D) bioprinting shows great potential for autologous vascular grafts due to its simplicity, accuracy, and flexibility. 6mm diameter vascular grafts are used in clinic. However, producing small-diameter vascular grafts are still an enormous challenge. Normally, sacrificial hydrogels are used as temporary lumen support to mold tubular structure which will affect the structure’s stability. In this study, we develop a new bioprinting approach to fabricating small-diameter vessel using two-step crosslinking process. ¼ lumen wall of bioprinted gelatin mechacrylate (GelMA) flat structure is exposed to ultraviolet (UV) light briefly for having certain strength, while ¾ lumen wall shows as concave structure remained uncrosslinked. Pre-crosslinked flat structure is merged towards the uncrosslinked concave structure. Two individual structures will be combined tightly into an intact tubular structure by receiving more UV exposure time. Complicated tubular structures are constructed by these method. Notably, the GelMA-based bioink loaded with smooth muscle cells (SMCs) are bioprinted as the outer layer and human umbilical vein endothelial cells (HUVECs) are seeded onto the inner surface. A bionic vascular vessel with dual layers is fabricated successfully and keeps good viability, and functionality. This study may provide a novel idea for fabricating biomimetic vascular network or other more complicated organs.


Author(s):  
Yongzhen Wei ◽  
Fei Wang ◽  
Zhikun Guo ◽  
Zhao Qiang
Keyword(s):  

Author(s):  
Sen Yang ◽  
Xueni Zheng ◽  
Meng Qian ◽  
He Wang ◽  
Fei Wang ◽  
...  

Artificial small-diameter vascular grafts (SDVG) fabricated from synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL), exhibit beneficial mechanical properties but are often faced with issues impacting their long-term graft success. Nitric oxide (NO) is an important physiological gasotransmitter with multiple roles in orchestrating vascular tissue function and regeneration. We fabricated a functional vascular graft by electrospinning of nitrate-functionalized poly(ε-caprolactone) that could release NO in a sustained manner via stepwise biotransformation in vivo. Nitrate-functionalized SDVG (PCL/NO) maintained patency following abdominal arterial replacement in rats. PCL/NO promoted cell infiltration at 3-months post-transplantation. In contrast, unmodified PCL SDVG showed slow cell in-growth and increased incidence of neointima formation. PCL/NO demonstrated improved endothelial cell (EC) alignment and luminal coverage, and more defined vascular smooth muscle cell (VSMC) layer, compared to unmodified PCL SDVG. In addition, release of NO stimulated Sca-1+ vascular progenitor cells (VPCs) to differentiate and contribute to rapid luminal endothelialization. Furthermore, PCL/NO inhibited the differentiation of VPCs into osteopontin-positive cells, thereby preventing vascular calcification. Overall, PCL/NO demonstrated enhanced cell ingrowth, EC monolayer formation and VSMC layer regeneration; whilst inhibiting calcified plaque formation. Our results suggested that PCL/NO could serve as promising candidates for improved and long-term success of SDVG implants.


Author(s):  
Benlin Sun ◽  
Lei Hou ◽  
Binbin Sun ◽  
Yu Han ◽  
Yunqing Zou ◽  
...  

The fabrication of tissue-engineered vascular grafts to replace damaged vessels is a promising therapy for cardiovascular diseases. Endothelial remodeling in the lumen of TEVGs is critical for successful revascularization. However, the construction of well-functioning TEVGs remains a fundamental challenge. Herein, chiral hybrid scaffolds were prepared by electrospinning using D/L-phenylalanine based gelators [D(L)PHEG] and poly-ε-caprolactone (PCL). The chirality of scaffolds significantly affected the endothelial remodeling progress of TEVGs. Compared with L-phenylalanine based gelators/poly-ε-caprolactone (L/PCL) and PCL, D-phenylalanine based gelators/poly-ε-caprolactone (D/PCL) scaffolds enhanced cell adhesion, and proliferation and upregulated the expression of fibronectin-1, and vinculin. These results suggests that chiral hybrid scaffolds can promote endothelial remodeling of TEVGs by upregulating adhesion-associated protein levels. This study offers an innovative strategy for endothelial remodeling of TEVGs by fabricating chiral hybrid scaffolds, and provides new insight for the treatment of cardiovascular diseases.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Eriselda Keshi ◽  
Peter Tang ◽  
Marie Weinhart ◽  
Hannah Everwien ◽  
Simon Moosburner ◽  
...  

Abstract Background Since autologous veins are unavailable when needed in more than 20% of cases in vascular surgery, the production of personalized biological vascular grafts for implantation has become crucial. Surface modification of decellularized xenogeneic grafts with vascular cells to achieve physiological luminal coverage and eventually thromboresistance is an important prerequisite for implantation. However, ex vivo thrombogenicity testing remains a neglected area in the field of tissue engineering of vascular grafts due to a multifold of reasons. Methods After seeding decellularized bovine carotid arteries with human endothelial progenitor cells and umbilical cord-derived mesenchymal stem cells, luminal endothelial cell coverage (LECC) was correlated with glucose and lactate levels on the cell supernatant. Then a closed loop whole blood perfusion system was designed. Recellularized grafts with a LECC > 50% and decellularized vascular grafts were perfused with human whole blood for 2 h. Hemolysis and complete blood count evaluation was performed on an hourly basis, followed by histological and immunohistochemical analysis. Results While whole blood perfusion of decellularized grafts significantly reduced platelet counts, platelet depletion from blood resulting from binding to re-endothelialized grafts was insignificant (p = 0.7284). Moreover, macroscopic evaluation revealed thrombus formation only in the lumen of unseeded grafts and histological characterization revealed lack of CD41 positive platelets in recellularized grafts, thus confirming their thromboresistance. Conclusion In the present study we were able to demonstrate the effect of surface modification of vascular grafts in their thromboresistance in an ex vivo whole blood perfusion system. To our knowledge, this is the first study to expose engineered vascular grafts to human whole blood, recirculating at high flow rates, immediately after seeding.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4042
Author(s):  
Thi My Do ◽  
Yang Yang ◽  
Aipeng Deng

Cardiovascular diseases, including coronary artery and peripheral vascular pathologies, are leading causes of mortality. As an alternative to autografts, prosthetic grafts have been developed to reduce the death rate. This study presents the development and characterization of bilayer vascular grafts with appropriate structural and biocompatibility properties. A polymer blend of recombinant human collagen (RHC) peptides and polycaprolactone (PCL) was used to build the inner layer of the graft by electrospinning and co-electrospinning the water-soluble polyethylene oxide (PEO) as sacrificial material together with PCL to generate the porous outer layer. The mechanical test demonstrated the bilayer scaffold’s appropriate mechanical properties as compared with the native vascular structure. Human umbilical vein endothelial cells (HUVEC) showed enhanced adhesion to the lumen after seeding on nanoscale fibers. Meanwhile, by enhancing the porosity of the microfibrous outer layer through the removal of PEO fibers, rat smooth muscle cells (A7r5) could proliferate and infiltrate the porous layer easily.


Sign in / Sign up

Export Citation Format

Share Document