The Diffuse γ Ray from Cosmic Ray Interactions in the Galaxy

Author(s):  
P. Chardonnet
1981 ◽  
Vol 94 ◽  
pp. 309-319 ◽  
Author(s):  
A. W. Wolfendale

It is shown that there is evidence favouring molecular clouds being sources of γ-rays, the fluxes being consistent with expectation for ambient cosmic rays interacting with the gas in the clouds for the clouds considered. An estimate is made of the fraction of the apparently diffuse γ-ray flux which comes from cosmic ray interactions in the I.S.M. as distinct from unresolved discrete sources. Finally, an examination is made of the possibility of gradients of cosmic ray intensity in the Galaxy.


1996 ◽  
Vol 169 ◽  
pp. 437-446 ◽  
Author(s):  
Hans Bloemen

Gamma-ray astronomy has become a rich field of research and matured significantly since the launch of NASA's Compton Gamma Ray Observatory in April 1991. Studies of the diffuse γ-ray emission of the Galaxy can now be performed in far more detail and extended into the MeV regime, including both continuum and line emission. These studies provide unique insight into various aspects of the interstellar medium, in particular of the cosmic-ray component. This paper gives a brief review on the diffuse Galactic γ-ray emission and summarizes early results and prospects from the Compton Observatory.


1976 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
W. R. Webber

In recent years observations of γ-ray emission from the disk of the galaxy have provided a new opportunity for research into the structure of the spiral arms of our own galaxy. In Figure 1 we show a map of the structure of the disk of the galaxy as observed for γ-rays of energy > 100 MeV by the SAS-2 satellite (Fichtel et al. 1975). The angular resolution of these measurements is ~ 3°, and besides two point sources at l = 190° and 265° several features related to the spiral structure of the galaxy are evident in the data. Most of these γ-rays are believed to arise from the decay of π° mesons produced by the nuclear interactions of cosmic rays (mostly protons) with the ambient interstellar gas. As a result, the γ-ray fluxes represent a measure of the line of sight integral of the product of the cosmic ray density NCR and the interstellar matter density N1


1993 ◽  
Vol 1 (3) ◽  
pp. 281-287 ◽  
Author(s):  
V.S. Berezinsky ◽  
T.K. Gaisser ◽  
F. Halzen ◽  
Todor Stanev

1985 ◽  
Vol 106 ◽  
pp. 225-233
Author(s):  
Catherine J. Cesarsky

Gamma rays of energy in the range 30 MeV-several GeV, observed by the satellites SAS-2 and COS-B, are emitted in the interstellar medium as a result of interactions with gas of cosmic-ray nuclei in the GeV range (π° decay γ rays) and cosmic-ray electrons of energy > 30 MeV (bremsstrahlung γ rays). W. Hermsen has presented at this conference the γ ray maps of the Galaxy in three “colours” constructed by the COS-B collaboration; the information in such maps is supplemented by radio-continuum studies (see lecture by R. Beck), and is a useful tool for studying the distribution of gas, cosmic rays (c.r.) and magnetic fields in the Galaxy. The variables in this problem are many:large-scale (~ 1 kpc) and small-scale (~10 pc) distributions of c.r. nuclei, of c.r. electrons, of atomic and molecular hydrogen, of magnetic fields, fraction of the observed radiation due to localized sources, etc. Of these, only the distribution - or at least the column densities - of atomic hydrogen are determined in a reliable way. Estimates of the amount of molecular hydrogen can be derived from CO observations or from galaxy counts. The radio and gamma-ray data are not sufficient to disentangle all the other variables in a unique fashion, unless a number of assumptions are made (e.g. Paul et al. 1976). Still, the COS-B team has been able to show that :a) there is a correlation between the gamma-ray emission from local regions, as observed at intermediate latitudes, and the total column density of dust, as measured by galaxy counts. The simplest interpretation is that the density of c.r. nuclei and electrons is uniform within 500 pc of the sun, and that dust and gas are well mixed. Then, γ rays can be used as excellent tracers of local gas complexes (Lebrun et al. 1982, Strong et al. 1982).b) In the same way, the simplest interpretation of the γ-ray emission at energy > 300 MeV from the inner Galaxy, is that c.r. nuclei and electrons are distributed uniformly as well : there is no need for an enhanced density of c.r. in the 3–6 kpc ring; on the contrary, even assuming a uniform density of c.r., the γ-ray data are in conflict with the highest estimates of molecular hydrogen in the radio-astronomy literature (Mayer-Hasselwander et al. 1982).c) In the outer Galaxy, the gradient of c.r. which had become apparent in the early SAS-2 data can now, with COS-B data, be studied in three energy ranges. A gradient in the c.r. distribution is only required to explain the low-energy radiation, which is dominated by bremsstrahlung from relativistic electrons (Bloemen et al., in preparation).


1999 ◽  
Vol 193 ◽  
pp. 205-217
Author(s):  
Roland Diehl

Gamma-rays from astrophysical sources testify energetic processes such as nucleosynthesis and cosmic ray collisions. Gamma-rays are observable from throughout the Galaxy, unattenuated by interstellar matter, provided their intensity exceeds the current instrumental sensitivity level (∼ 10−5ph cm−2s−1 at 1 MeV). Massive stars are at the origin of relevant sources: The all-sky image in the 1.809 MeV γ-ray line from radioactive 26Al traces nucleosynthesis throughout the Galaxy. The structure of this emission along the plane of the Galaxy suggests massive stars as dominating sources of this radioactivity. Discrimination of the contribution from core collapse supernova against that from WR-wind ejected hydrostatic nucleosynthesis products may be obtained from 60Fe γ-ray line observations, or from spatial-profile consequences of the metallicity dependence of 26Al production in theories for both source sites. As a single source, the nearest WR star in the γ2 Vel system is found to eject less 26Al into interstellar space than current theories predict. However, a more adequate comparison must be based on a time-dependent 26Al light-curve of the system. Furthermore, continuum γ-ray production in WR binaries through wind-wind interaction, and constraints on the low-energy cosmic ray origin in WR winds through characteristic nuclear deexcitation line studies are targets of research. Studies stimulated by COMPTEL'S 3–7 MeV excess report from the Orion region indicate that the γ-ray line measurements could separate the origins from supernova ejecta and wind material. The COMPTEL Orion result is now attributed chiefly to an instrumental artifact, and has been withdrawn. Nevertheless, the search for MeV emission from massive star clusters, as well as from interacting binaries such as WR 140, promises a unique test of particle acceleration scenarios related to the source mechanism for cosmic ray production.


2013 ◽  
Vol 9 (S303) ◽  
pp. 429-433
Author(s):  
Miwa Goto

AbstractCosmic rays represent a unique crossing point of high-energy astrophysics and astrochemistry. The cosmic ray ionization rate of molecular hydrogen (ζ2) measured by H3+ spectroscopy in the central parsec of the Galaxy is 2 orders of magnitude higher than that in the dense clouds outside the Galactic center. However, it is still too short, by the factor of 10,000, to agree with an extremely high ζ2 that accommodates the new γ-ray observations of Sgr A* and its environment.


1979 ◽  
Vol 84 ◽  
pp. 483-484
Author(s):  
C. E. Fichtel ◽  
G. A. Simpson ◽  
D. J. Thompson

An examination of the intensity, energy spectrum, and spatial distribution of the diffuse γ radiation observed by SAS 2 away from the galactic plane in the energy range above 35 MeV has revealed no evidence supporting a cosmic ray halo surrounding the galaxy in the general shape of a sphere. The diffuse γ radiation does consist of two components. One component is related to the galactic disk on the basis of its correlation with the 21-cm measurements, the continuum radio emission, and galactic coordinates. Further its energy spectrum is similar to that in the plane, and its intensity distribution joins smoothly to the intense radiation from the plane. The other component appears isotropic, at least on a coarse scale, and has a steep energy spectrum. The degree of isotropy which has been established for the “isotropic” radiation and the steep energy spectrum, which distinguishes it from the galactic disk radiation, place strong constraints on galactic halo models for the origin of this component. Theoretical models involving a galactic halo have generally postulated a halo with dimensions of the order of the Galaxy and hence a radius, at least in the plane, of about 15 kpcs. Since the Sun is about 10 kpc from the galactic center, if such a halo exists and is responsible for the γ rays (through, for example, black body Compton radiation), a very marked anisotropy would be seen, with the γ ray intensity from the general direction of the galactic center being much larger than that from the same latitudes in the anticenter direction. In fact, no such anisotropy is seen; specifically the ratio of the average intensity in the (300° < ℓ < 60°, 20° < |b| < 40°) region to that in the (100° < ℓ < 250°, 20° < |b| < 40°) region was found to be 1.10±0.19 compared to a calculated value for a model with a uniform cosmic ray sphere with a 15 kpc radius of 2.85. The ratio between the average γ-ray intensity from regions with |b| < 60° to that from 20° < |b| < 40° is found to be 0.87±0.09. If the region is assumed to be spherical, but with a larger radius and a uniform cosmic ray density, the upper limit (2σ) set for the anisotropy demands that the radius be at least 45 kpc. An extragalactic origin for the isotropic component currently appears to be a more plausible explanation.


Author(s):  
Alessandro De Angelis ◽  
Vincent Tatischeff ◽  
Andrea Argan ◽  
Søren Brandt ◽  
Andrea Bulgarelli ◽  
...  

AbstractThe energy range between about 100 keV and 1 GeV is of interest for a vast class of astrophysical topics. In particular, (1) it is the missing ingredient for understanding extreme processes in the multi-messenger era; (2) it allows localizing cosmic-ray interactions with background material and radiation in the Universe, and spotting the reprocessing of these particles; (3) last but not least, gamma-ray emission lines trace the formation of elements in the Galaxy and beyond. In addition, studying the still largely unexplored MeV domain of astronomy would provide for a rich observatory science, including the study of compact objects, solar- and Earth-science, as well as fundamental physics. The technological development of silicon microstrip detectors makes it possible now to detect MeV photons in space with high efficiency and low background. During the last decade, a concept of detector (“ASTROGAM”) has been proposed to fulfil these goals, based on a silicon hodoscope, a 3D position-sensitive calorimeter, and an anticoincidence detector. In this paper we stress the importance of a medium size (M-class) space mission, dubbed “ASTROMEV”, to fulfil these objectives.


Sign in / Sign up

Export Citation Format

Share Document